Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li
{"title":"基于苯并[4,5]咪唑并[1,2-a]嘧啶结构的固有靶向荧光传感器,用于溶酶体粘度成像和溶酶体贮积症诊断","authors":"Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li","doi":"10.1016/j.cclet.2024.110050","DOIUrl":null,"url":null,"abstract":"<div><p>Benzo[4,5]imidazo[1,2-<em>a</em>]pyrimidine-based derivatives play crucial roles in medicines, pesticides, tracers and photoelectric materials. However, their synthesis approach still needs to be optimized, and their fluorescent properties in intracellular microenvironment are unclear. Here, a Cu(II)-catalyzed cascade coupling cyclization reaction was successfully developed to synthesize benzo[4,5]imidazo[1,2-<em>a</em>]pyrimidine scaffold with mild reaction conditions, broad substrate scopes and high yields. After a system study, we found that compound <strong>4aa</strong> displayed an optimal viscosity-specific response with remarkable fluorescence enhancement (102-fold) for glycerol at 490 nm. Particularly, <strong>4aa</strong> possessed excellent structure-inherent targeting (SIT) capability for lysosome (<em>P</em> = 0.95) with high pH stability and large Stokes shift. Importantly, <strong>4aa</strong> was validated for its effectiveness in diagnosing lysosomal storage disorders (LSD) in living cells. The <strong>4aa</strong> also showed its potential to map the micro-viscosity and its metabolism process in zebrafish. This work not only affords an efficient protocol to fabricate benzo[4,5]imidazo[1,2-<em>a</em>]pyrimidine derivatives, reveals this skeleton has excellent SIT features for lysosome, but also manifests that <strong>4aa</strong> can serve as a practical tool to monitor lysosomal viscosity and diagnose LSD.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"35 11","pages":"Article 110050"},"PeriodicalIF":9.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders\",\"authors\":\"Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li\",\"doi\":\"10.1016/j.cclet.2024.110050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benzo[4,5]imidazo[1,2-<em>a</em>]pyrimidine-based derivatives play crucial roles in medicines, pesticides, tracers and photoelectric materials. However, their synthesis approach still needs to be optimized, and their fluorescent properties in intracellular microenvironment are unclear. Here, a Cu(II)-catalyzed cascade coupling cyclization reaction was successfully developed to synthesize benzo[4,5]imidazo[1,2-<em>a</em>]pyrimidine scaffold with mild reaction conditions, broad substrate scopes and high yields. After a system study, we found that compound <strong>4aa</strong> displayed an optimal viscosity-specific response with remarkable fluorescence enhancement (102-fold) for glycerol at 490 nm. Particularly, <strong>4aa</strong> possessed excellent structure-inherent targeting (SIT) capability for lysosome (<em>P</em> = 0.95) with high pH stability and large Stokes shift. Importantly, <strong>4aa</strong> was validated for its effectiveness in diagnosing lysosomal storage disorders (LSD) in living cells. The <strong>4aa</strong> also showed its potential to map the micro-viscosity and its metabolism process in zebrafish. This work not only affords an efficient protocol to fabricate benzo[4,5]imidazo[1,2-<em>a</em>]pyrimidine derivatives, reveals this skeleton has excellent SIT features for lysosome, but also manifests that <strong>4aa</strong> can serve as a practical tool to monitor lysosomal viscosity and diagnose LSD.</p></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"35 11\",\"pages\":\"Article 110050\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724005692\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724005692","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders
Benzo[4,5]imidazo[1,2-a]pyrimidine-based derivatives play crucial roles in medicines, pesticides, tracers and photoelectric materials. However, their synthesis approach still needs to be optimized, and their fluorescent properties in intracellular microenvironment are unclear. Here, a Cu(II)-catalyzed cascade coupling cyclization reaction was successfully developed to synthesize benzo[4,5]imidazo[1,2-a]pyrimidine scaffold with mild reaction conditions, broad substrate scopes and high yields. After a system study, we found that compound 4aa displayed an optimal viscosity-specific response with remarkable fluorescence enhancement (102-fold) for glycerol at 490 nm. Particularly, 4aa possessed excellent structure-inherent targeting (SIT) capability for lysosome (P = 0.95) with high pH stability and large Stokes shift. Importantly, 4aa was validated for its effectiveness in diagnosing lysosomal storage disorders (LSD) in living cells. The 4aa also showed its potential to map the micro-viscosity and its metabolism process in zebrafish. This work not only affords an efficient protocol to fabricate benzo[4,5]imidazo[1,2-a]pyrimidine derivatives, reveals this skeleton has excellent SIT features for lysosome, but also manifests that 4aa can serve as a practical tool to monitor lysosomal viscosity and diagnose LSD.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.