Reza Shamsaee Malfajani;Reza Damansabz;Sampada Bodkhe;Daniel Therriault;Jean-Jacques Laurin;Mohammad S. Sharawi
{"title":"为未来无线通信提供大工作频率的 3D 打印封装介质谐振器天线","authors":"Reza Shamsaee Malfajani;Reza Damansabz;Sampada Bodkhe;Daniel Therriault;Jean-Jacques Laurin;Mohammad S. Sharawi","doi":"10.1109/OJAP.2024.3416399","DOIUrl":null,"url":null,"abstract":"Shared aperture antennas are versatile structures that can fulfill the demand for multi-band compact antennas in multi-standard emerging communication systems. However, the requirement of operation at widely separated frequency bands, such as sub-6-GHz band and mm-wave band in 5G, poses a challenge. This paper introduces a novel Encapsulated Dielectric Resonator Antennas (E-DRAs) designed for operation at sub-6-GHz and mm-wave bands for 5G and beyond applications. The DRA part of the antenna consists of an array of small cylindrical DRAs (cDRA) encapsulated in a larger cylinder. At mm-wave band, the small cDRAs are radiating elements while the larger cylinder acts as a lens to enhance the gain and provide beam switching at discrete angles by switching the feed between the small cDRAs. At sub-6-GHz band, the large cylinder is the main radiator. The antenna is realized with a 3D printing process using two distinct ABS materials with different infills. Measurements of the fabricated antenna show a maximum gain of 7.8 dBi at 3.35 GHz and 19.7 dBi at 27 GHz. The measured bandwidth is 20.2% centered at 3.45 GHz and 28.7% centered at 28.5 GHz. The array of small cDRAs with five elements enables beam switching within ±30°.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 5","pages":"1351-1364"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561523","citationCount":"0","resultStr":"{\"title\":\"3-D-Printed Encapsulated Dielectric Resonator Antennas With Large Operation Frequency Ratio for Future Wireless Communications\",\"authors\":\"Reza Shamsaee Malfajani;Reza Damansabz;Sampada Bodkhe;Daniel Therriault;Jean-Jacques Laurin;Mohammad S. Sharawi\",\"doi\":\"10.1109/OJAP.2024.3416399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shared aperture antennas are versatile structures that can fulfill the demand for multi-band compact antennas in multi-standard emerging communication systems. However, the requirement of operation at widely separated frequency bands, such as sub-6-GHz band and mm-wave band in 5G, poses a challenge. This paper introduces a novel Encapsulated Dielectric Resonator Antennas (E-DRAs) designed for operation at sub-6-GHz and mm-wave bands for 5G and beyond applications. The DRA part of the antenna consists of an array of small cylindrical DRAs (cDRA) encapsulated in a larger cylinder. At mm-wave band, the small cDRAs are radiating elements while the larger cylinder acts as a lens to enhance the gain and provide beam switching at discrete angles by switching the feed between the small cDRAs. At sub-6-GHz band, the large cylinder is the main radiator. The antenna is realized with a 3D printing process using two distinct ABS materials with different infills. Measurements of the fabricated antenna show a maximum gain of 7.8 dBi at 3.35 GHz and 19.7 dBi at 27 GHz. The measured bandwidth is 20.2% centered at 3.45 GHz and 28.7% centered at 28.5 GHz. The array of small cDRAs with five elements enables beam switching within ±30°.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"5 5\",\"pages\":\"1351-1364\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561523\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561523/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10561523/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
3-D-Printed Encapsulated Dielectric Resonator Antennas With Large Operation Frequency Ratio for Future Wireless Communications
Shared aperture antennas are versatile structures that can fulfill the demand for multi-band compact antennas in multi-standard emerging communication systems. However, the requirement of operation at widely separated frequency bands, such as sub-6-GHz band and mm-wave band in 5G, poses a challenge. This paper introduces a novel Encapsulated Dielectric Resonator Antennas (E-DRAs) designed for operation at sub-6-GHz and mm-wave bands for 5G and beyond applications. The DRA part of the antenna consists of an array of small cylindrical DRAs (cDRA) encapsulated in a larger cylinder. At mm-wave band, the small cDRAs are radiating elements while the larger cylinder acts as a lens to enhance the gain and provide beam switching at discrete angles by switching the feed between the small cDRAs. At sub-6-GHz band, the large cylinder is the main radiator. The antenna is realized with a 3D printing process using two distinct ABS materials with different infills. Measurements of the fabricated antenna show a maximum gain of 7.8 dBi at 3.35 GHz and 19.7 dBi at 27 GHz. The measured bandwidth is 20.2% centered at 3.45 GHz and 28.7% centered at 28.5 GHz. The array of small cDRAs with five elements enables beam switching within ±30°.