用于高增益波束赋形的亚千赫共形透镜集成 WR3.4 天线

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-11 DOI:10.1109/OJAP.2024.3412282
Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick
{"title":"用于高增益波束赋形的亚千赫共形透镜集成 WR3.4 天线","authors":"Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick","doi":"10.1109/OJAP.2024.3412282","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the first conformal lens-integrated rectangular waveguide antenna that achieves high-gain beam-steering in the sub-THz range of 230 GHz to 330 GHz, to the best of the authors’ knowledge. The antenna consists of a \n<inline-formula> <tex-math>$2 \\times 32$ </tex-math></inline-formula>\n array of elliptical slots (E-slots) fed by a standard WR3.4 rectangular waveguide, ensuring that the antenna operates in its dominant TE10 mode. The E-slots are spaced by less than half of the guided wavelength, which causes them to be fed with a constant phase difference, thus leading to a progressive phase shift along the antenna aperture. Consequently, the antenna main lobe steers from -71° to -16° as the operating frequency varies from 230 GHz to 330 GHz, respectively. The WR3.4 antenna gain is enhanced by integrating it with a conformal plano-convex parabolic lens. The conformal lens is designed taking into consideration the phase center of multiple steered beams, which leads to a significant gain enhancement of up to 10 dB over the complete beam-steering range. The conformal lens integrated WR3.4 antenna achieves a peak antenna gain of up to 30 dBi. An antenna prototype is manufactured using a mechanical assembly concept based on standard computerized numerical control (CNC) milling and a laser ablation process. For the prototype, a WR3.4 waveguide with an H-plane bend and a short termination is fabricated in a brass split-block module using CNC milling. The E-slots are ablated on a \n<inline-formula> <tex-math>$\\mathrm {125~\\mu \\text { m} }$ </tex-math></inline-formula>\n thick aluminum (Al) sheet using a picosecond laser. Furthermore, a laser-structured die attach foil is interposed between the Al sheet and the brass split-block module to minimize the contact resistance between the E-slots and the WR3.4 waveguide. Additionally, a standard WR3.4 flange is manufactured to facilitate the antenna measurement.The conformal lens-integrated WR3.4 antenna has a compact size of \n<inline-formula> <tex-math>$ {\\mathrm {65~\\text {m}\\text {m} }} \\times {\\mathrm {30~\\text {m}\\text {m} }} \\times {\\mathrm {32.35~\\text {m}\\text {m} }}$ </tex-math></inline-formula>\n. It achieves the largest beam-steering range combined with the highest peak antenna gain in the broadband sub-THz range of 230 GHz to 330 GHz published to date.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 5","pages":"1306-1319"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552815","citationCount":"0","resultStr":"{\"title\":\"Sub-THz Conformal Lens Integrated WR3.4 Antenna for High-Gain Beam-Steering\",\"authors\":\"Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick\",\"doi\":\"10.1109/OJAP.2024.3412282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the first conformal lens-integrated rectangular waveguide antenna that achieves high-gain beam-steering in the sub-THz range of 230 GHz to 330 GHz, to the best of the authors’ knowledge. The antenna consists of a \\n<inline-formula> <tex-math>$2 \\\\times 32$ </tex-math></inline-formula>\\n array of elliptical slots (E-slots) fed by a standard WR3.4 rectangular waveguide, ensuring that the antenna operates in its dominant TE10 mode. The E-slots are spaced by less than half of the guided wavelength, which causes them to be fed with a constant phase difference, thus leading to a progressive phase shift along the antenna aperture. Consequently, the antenna main lobe steers from -71° to -16° as the operating frequency varies from 230 GHz to 330 GHz, respectively. The WR3.4 antenna gain is enhanced by integrating it with a conformal plano-convex parabolic lens. The conformal lens is designed taking into consideration the phase center of multiple steered beams, which leads to a significant gain enhancement of up to 10 dB over the complete beam-steering range. The conformal lens integrated WR3.4 antenna achieves a peak antenna gain of up to 30 dBi. An antenna prototype is manufactured using a mechanical assembly concept based on standard computerized numerical control (CNC) milling and a laser ablation process. For the prototype, a WR3.4 waveguide with an H-plane bend and a short termination is fabricated in a brass split-block module using CNC milling. The E-slots are ablated on a \\n<inline-formula> <tex-math>$\\\\mathrm {125~\\\\mu \\\\text { m} }$ </tex-math></inline-formula>\\n thick aluminum (Al) sheet using a picosecond laser. Furthermore, a laser-structured die attach foil is interposed between the Al sheet and the brass split-block module to minimize the contact resistance between the E-slots and the WR3.4 waveguide. Additionally, a standard WR3.4 flange is manufactured to facilitate the antenna measurement.The conformal lens-integrated WR3.4 antenna has a compact size of \\n<inline-formula> <tex-math>$ {\\\\mathrm {65~\\\\text {m}\\\\text {m} }} \\\\times {\\\\mathrm {30~\\\\text {m}\\\\text {m} }} \\\\times {\\\\mathrm {32.35~\\\\text {m}\\\\text {m} }}$ </tex-math></inline-formula>\\n. It achieves the largest beam-steering range combined with the highest peak antenna gain in the broadband sub-THz range of 230 GHz to 330 GHz published to date.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"5 5\",\"pages\":\"1306-1319\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552815\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10552815/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552815/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

据作者所知,本文展示了首个保形透镜集成矩形波导天线,该天线可在 230 GHz 至 330 GHz 的亚 THz 范围内实现高增益波束转向。该天线由一个 2 美元乘 32 美元的椭圆槽(E 槽)阵列组成,由标准 WR3.4 矩形波导馈电,确保天线在其主导 TE10 模式下工作。E 型槽的间距小于导波波长的一半,这就使它们以恒定的相位差馈电,从而导致沿天线孔径的渐进相移。因此,当工作频率从 230 千兆赫变化到 330 千兆赫时,天线主瓣分别从-71°转向-16°。通过将 WR3.4 天线与保角平凸抛物面透镜集成,增强了 WR3.4 天线的增益。保角透镜的设计考虑到了多个转向波束的相位中心,从而在整个波束转向范围内显著提高了增益,最高可达 10 dB。保角透镜集成 WR3.4 天线的天线增益峰值可达 30 dBi。天线原型是利用基于标准计算机数控(CNC)铣削和激光烧蚀工艺的机械装配概念制造的。在原型中,使用 CNC 铣削技术在黄铜分块模块中制作了带有 H 平面弯曲和短终端的 WR3.4 波导。E 槽是在一块 $\mathrm {125~\mu \text { m}}$ 厚的铝板上烧蚀的。}$ 厚的铝 (Al) 板上使用皮秒激光进行烧蚀。此外,还在铝片和黄铜分块模块之间插入了激光结构的芯片附着箔,以最大限度地减小 E 槽和 WR3.4 波导之间的接触电阻。此外,还制造了一个标准的 WR3.4 法兰,以方便天线的测量。保偏透镜集成 WR3.4 天线的尺寸非常小,仅为 $ {\mathrm {65~\text {m}\text {m} }}。}}\times {\mathrm {30~\text {m}\text {m} }}}}\times {\mathrm {32.35~\text {m}\text {m} }}$ 。它在 230 GHz 至 330 GHz 的宽带亚 THz 范围内实现了最大的波束转向范围和最高的天线增益峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-THz Conformal Lens Integrated WR3.4 Antenna for High-Gain Beam-Steering
This paper demonstrates the first conformal lens-integrated rectangular waveguide antenna that achieves high-gain beam-steering in the sub-THz range of 230 GHz to 330 GHz, to the best of the authors’ knowledge. The antenna consists of a $2 \times 32$ array of elliptical slots (E-slots) fed by a standard WR3.4 rectangular waveguide, ensuring that the antenna operates in its dominant TE10 mode. The E-slots are spaced by less than half of the guided wavelength, which causes them to be fed with a constant phase difference, thus leading to a progressive phase shift along the antenna aperture. Consequently, the antenna main lobe steers from -71° to -16° as the operating frequency varies from 230 GHz to 330 GHz, respectively. The WR3.4 antenna gain is enhanced by integrating it with a conformal plano-convex parabolic lens. The conformal lens is designed taking into consideration the phase center of multiple steered beams, which leads to a significant gain enhancement of up to 10 dB over the complete beam-steering range. The conformal lens integrated WR3.4 antenna achieves a peak antenna gain of up to 30 dBi. An antenna prototype is manufactured using a mechanical assembly concept based on standard computerized numerical control (CNC) milling and a laser ablation process. For the prototype, a WR3.4 waveguide with an H-plane bend and a short termination is fabricated in a brass split-block module using CNC milling. The E-slots are ablated on a $\mathrm {125~\mu \text { m} }$ thick aluminum (Al) sheet using a picosecond laser. Furthermore, a laser-structured die attach foil is interposed between the Al sheet and the brass split-block module to minimize the contact resistance between the E-slots and the WR3.4 waveguide. Additionally, a standard WR3.4 flange is manufactured to facilitate the antenna measurement.The conformal lens-integrated WR3.4 antenna has a compact size of $ {\mathrm {65~\text {m}\text {m} }} \times {\mathrm {30~\text {m}\text {m} }} \times {\mathrm {32.35~\text {m}\text {m} }}$ . It achieves the largest beam-steering range combined with the highest peak antenna gain in the broadband sub-THz range of 230 GHz to 330 GHz published to date.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
期刊最新文献
Front Cover Table of Contents Guest Editorial Introduction to the Special Section on Women’s Research in Antennas and Propagation Section (WRAPS) IEEE ANTENNAS AND PROPAGATION SOCIETY Electromagnetic and Thermal Co-Analysis of an Implanted Dipole Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1