Na Liu;Yansheng Gong;Rui Xu;Huanyang Chen;Guoxiong Cai
{"title":"基于有限元法的改进型双曲介质单轴完全匹配层","authors":"Na Liu;Yansheng Gong;Rui Xu;Huanyang Chen;Guoxiong Cai","doi":"10.1109/OJAP.2024.3412410","DOIUrl":null,"url":null,"abstract":"Recently, hyperbolic media (HM) has attracted considerable interest due to their open isofrequency contour (IFC) and high-k modes, while their numerical computational methods in infinite space are challenging. Although the uniaxial perfectly matched layer (UPML) has been successfully utilized, its failure in absorbing electromagnetic waves with HM has been shown in recent research. In this work, the reason for the failure is thoroughly analyzed, and an improved UPML is proposed based on the frequency domain finite element method (FEM) to truncate the unbound hyperbolic computational domain. Finally, the excellent absorption effect of the improved UPML is verified by representative examples such as an infinite HM, a linear-crossing metamaterial, and a Bessel beam.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 4","pages":"1113-1120"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552830","citationCount":"0","resultStr":"{\"title\":\"An Improved Uniaxial Perfectly Matched Layer Based on Finite Element Method for Hyperbolic Media\",\"authors\":\"Na Liu;Yansheng Gong;Rui Xu;Huanyang Chen;Guoxiong Cai\",\"doi\":\"10.1109/OJAP.2024.3412410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, hyperbolic media (HM) has attracted considerable interest due to their open isofrequency contour (IFC) and high-k modes, while their numerical computational methods in infinite space are challenging. Although the uniaxial perfectly matched layer (UPML) has been successfully utilized, its failure in absorbing electromagnetic waves with HM has been shown in recent research. In this work, the reason for the failure is thoroughly analyzed, and an improved UPML is proposed based on the frequency domain finite element method (FEM) to truncate the unbound hyperbolic computational domain. Finally, the excellent absorption effect of the improved UPML is verified by representative examples such as an infinite HM, a linear-crossing metamaterial, and a Bessel beam.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"5 4\",\"pages\":\"1113-1120\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552830\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10552830/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552830/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
最近,双曲介质(HM)因其开放式等频轮廓(IFC)和高 K 模而引起了广泛关注,但其在无限空间中的数值计算方法却极具挑战性。虽然单轴完全匹配层(UPML)已被成功利用,但最近的研究表明,它在用 HM 吸收电磁波时失效了。本文深入分析了失效原因,并基于频域有限元法(FEM)提出了一种改进的 UPML,以截断非约束双曲计算域。最后,通过无限 HM、线性交叉超材料和贝塞尔梁等代表性实例验证了改进型 UPML 的出色吸收效果。
An Improved Uniaxial Perfectly Matched Layer Based on Finite Element Method for Hyperbolic Media
Recently, hyperbolic media (HM) has attracted considerable interest due to their open isofrequency contour (IFC) and high-k modes, while their numerical computational methods in infinite space are challenging. Although the uniaxial perfectly matched layer (UPML) has been successfully utilized, its failure in absorbing electromagnetic waves with HM has been shown in recent research. In this work, the reason for the failure is thoroughly analyzed, and an improved UPML is proposed based on the frequency domain finite element method (FEM) to truncate the unbound hyperbolic computational domain. Finally, the excellent absorption effect of the improved UPML is verified by representative examples such as an infinite HM, a linear-crossing metamaterial, and a Bessel beam.