在大型语言模型中量化不确定性的问题重述:分子化学任务中的应用

Zizhang Chen, Pengyu Hong, Sandeep Madireddy
{"title":"在大型语言模型中量化不确定性的问题重述:分子化学任务中的应用","authors":"Zizhang Chen, Pengyu Hong, Sandeep Madireddy","doi":"arxiv-2408.03732","DOIUrl":null,"url":null,"abstract":"Uncertainty quantification enables users to assess the reliability of\nresponses generated by large language models (LLMs). We present a novel\nQuestion Rephrasing technique to evaluate the input uncertainty of LLMs, which\nrefers to the uncertainty arising from equivalent variations of the inputs\nprovided to LLMs. This technique is integrated with sampling methods that\nmeasure the output uncertainty of LLMs, thereby offering a more comprehensive\nuncertainty assessment. We validated our approach on property prediction and\nreaction prediction for molecular chemistry tasks.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Question Rephrasing for Quantifying Uncertainty in Large Language Models: Applications in Molecular Chemistry Tasks\",\"authors\":\"Zizhang Chen, Pengyu Hong, Sandeep Madireddy\",\"doi\":\"arxiv-2408.03732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty quantification enables users to assess the reliability of\\nresponses generated by large language models (LLMs). We present a novel\\nQuestion Rephrasing technique to evaluate the input uncertainty of LLMs, which\\nrefers to the uncertainty arising from equivalent variations of the inputs\\nprovided to LLMs. This technique is integrated with sampling methods that\\nmeasure the output uncertainty of LLMs, thereby offering a more comprehensive\\nuncertainty assessment. We validated our approach on property prediction and\\nreaction prediction for molecular chemistry tasks.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不确定性量化使用户能够评估大型语言模型(LLM)生成的回答的可靠性。我们提出了一种新颖的问题重述技术来评估 LLM 的输入不确定性,即 LLM 输入等效变化所产生的不确定性。该技术与测量 LLM 输出不确定性的采样方法相结合,从而提供了更全面的不确定性评估。我们在分子化学任务的性质预测和反应预测中验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Question Rephrasing for Quantifying Uncertainty in Large Language Models: Applications in Molecular Chemistry Tasks
Uncertainty quantification enables users to assess the reliability of responses generated by large language models (LLMs). We present a novel Question Rephrasing technique to evaluate the input uncertainty of LLMs, which refers to the uncertainty arising from equivalent variations of the inputs provided to LLMs. This technique is integrated with sampling methods that measure the output uncertainty of LLMs, thereby offering a more comprehensive uncertainty assessment. We validated our approach on property prediction and reaction prediction for molecular chemistry tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1