用于旋转快速交叉相关的张量模板匹配及其在断层扫描中的应用

Antonio Martinez-SanchezUniversity of Murcia, Spain, Ulrike HombergThermo Fisher Scientific, José María AlmiraUniversity of Murcia, Spain, Harold PhelippeauThermo Fisher Scientific
{"title":"用于旋转快速交叉相关的张量模板匹配及其在断层扫描中的应用","authors":"Antonio Martinez-SanchezUniversity of Murcia, Spain, Ulrike HombergThermo Fisher Scientific, José María AlmiraUniversity of Murcia, Spain, Harold PhelippeauThermo Fisher Scientific","doi":"arxiv-2408.02398","DOIUrl":null,"url":null,"abstract":"Object detection is a main task in computer vision. Template matching is the\nreference method for detecting objects with arbitrary templates. However,\ntemplate matching computational complexity depends on the rotation accuracy,\nbeing a limiting factor for large 3D images (tomograms). Here, we implement a\nnew algorithm called tensorial template matching, based on a mathematical\nframework that represents all rotations of a template with a tensor field.\nContrary to standard template matching, the computational complexity of the\npresented algorithm is independent of the rotation accuracy. Using both,\nsynthetic and real data from tomography, we demonstrate that tensorial template\nmatching is much faster than template matching and has the potential to improve\nits accuracy","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensorial template matching for fast cross-correlation with rotations and its application for tomography\",\"authors\":\"Antonio Martinez-SanchezUniversity of Murcia, Spain, Ulrike HombergThermo Fisher Scientific, José María AlmiraUniversity of Murcia, Spain, Harold PhelippeauThermo Fisher Scientific\",\"doi\":\"arxiv-2408.02398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection is a main task in computer vision. Template matching is the\\nreference method for detecting objects with arbitrary templates. However,\\ntemplate matching computational complexity depends on the rotation accuracy,\\nbeing a limiting factor for large 3D images (tomograms). Here, we implement a\\nnew algorithm called tensorial template matching, based on a mathematical\\nframework that represents all rotations of a template with a tensor field.\\nContrary to standard template matching, the computational complexity of the\\npresented algorithm is independent of the rotation accuracy. Using both,\\nsynthetic and real data from tomography, we demonstrate that tensorial template\\nmatching is much faster than template matching and has the potential to improve\\nits accuracy\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物体检测是计算机视觉领域的一项主要任务。模板匹配是利用任意模板检测物体的一种参考方法。然而,模板匹配的计算复杂度取决于旋转精度,这对于大型三维图像(断层图像)来说是一个限制因素。与标准模板匹配相反,本算法的计算复杂度与旋转精度无关。与标准模板匹配算法相反,本算法的计算复杂度与旋转精度无关。我们利用断层扫描的合成数据和真实数据证明,张量模板匹配比模板匹配快得多,而且有可能提高其精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensorial template matching for fast cross-correlation with rotations and its application for tomography
Object detection is a main task in computer vision. Template matching is the reference method for detecting objects with arbitrary templates. However, template matching computational complexity depends on the rotation accuracy, being a limiting factor for large 3D images (tomograms). Here, we implement a new algorithm called tensorial template matching, based on a mathematical framework that represents all rotations of a template with a tensor field. Contrary to standard template matching, the computational complexity of the presented algorithm is independent of the rotation accuracy. Using both, synthetic and real data from tomography, we demonstrate that tensorial template matching is much faster than template matching and has the potential to improve its accuracy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1