Yu Zhang;Renqiang Zhu;Haolan Qu;Yitian Gu;Huaxing Jiang;Kei May Lau;Xinbo Zou
{"title":"厚底电介质垂直氮化镓沟槽 MOSFET 的动态可靠性评估","authors":"Yu Zhang;Renqiang Zhu;Haolan Qu;Yitian Gu;Huaxing Jiang;Kei May Lau;Xinbo Zou","doi":"10.1109/TDMR.2024.3408293","DOIUrl":null,"url":null,"abstract":"Dynamic stability of quasi-vertical GaN trench MOSFETs featuring a thick bottom dielectric (TBD) is thoroughly investigated. Degradation in forward drain current was observed as applying gate or drain stressing voltage, and further studied by time-resolved measurements. The drain current of the device can be maintained at 79%, compared to 61% of a reference device without TBD. Meanwhile, repeated switching tests conducted within a short on-state time demonstrate that the current collapse is confined to 10% after 500 switching cycles. The current collapse is related to electron capture at the dielectric/GaN interface, and the introduction of TBD reduces the electric field within the dielectric layer and suppresses the capture process of traps. Positive gate bias-induced threshold instability of the device with and without TBD is investigated. For the device with TBD, a small positive threshold voltage shift of 1 V is obtained. In addition, the effect of drain stressing voltage on devices is also revealed. High-resolution drain current transient spectroscopy displays the drain current reduction, attributing the degradation to captured electrons in the n--GaN layer. A capture activation energy of 0.26 eV is revealed by deep level transient spectroscopy. These findings reveal the efficacy of TBD inclusion in improving gate stability of GaN MOSFETs and underscore the critical importance of high-quality epitaxial growth for ensuring the stability of vertical devices. The stability characterization serves as a valuable reference for the development of reliable quasi-vertical GaN MOSFET devices.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"358-364"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Reliability Assessment of Vertical GaN Trench MOSFETs With Thick Bottom Dielectric\",\"authors\":\"Yu Zhang;Renqiang Zhu;Haolan Qu;Yitian Gu;Huaxing Jiang;Kei May Lau;Xinbo Zou\",\"doi\":\"10.1109/TDMR.2024.3408293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic stability of quasi-vertical GaN trench MOSFETs featuring a thick bottom dielectric (TBD) is thoroughly investigated. Degradation in forward drain current was observed as applying gate or drain stressing voltage, and further studied by time-resolved measurements. The drain current of the device can be maintained at 79%, compared to 61% of a reference device without TBD. Meanwhile, repeated switching tests conducted within a short on-state time demonstrate that the current collapse is confined to 10% after 500 switching cycles. The current collapse is related to electron capture at the dielectric/GaN interface, and the introduction of TBD reduces the electric field within the dielectric layer and suppresses the capture process of traps. Positive gate bias-induced threshold instability of the device with and without TBD is investigated. For the device with TBD, a small positive threshold voltage shift of 1 V is obtained. In addition, the effect of drain stressing voltage on devices is also revealed. High-resolution drain current transient spectroscopy displays the drain current reduction, attributing the degradation to captured electrons in the n--GaN layer. A capture activation energy of 0.26 eV is revealed by deep level transient spectroscopy. These findings reveal the efficacy of TBD inclusion in improving gate stability of GaN MOSFETs and underscore the critical importance of high-quality epitaxial growth for ensuring the stability of vertical devices. The stability characterization serves as a valuable reference for the development of reliable quasi-vertical GaN MOSFET devices.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"24 3\",\"pages\":\"358-364\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10547004/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10547004/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Reliability Assessment of Vertical GaN Trench MOSFETs With Thick Bottom Dielectric
Dynamic stability of quasi-vertical GaN trench MOSFETs featuring a thick bottom dielectric (TBD) is thoroughly investigated. Degradation in forward drain current was observed as applying gate or drain stressing voltage, and further studied by time-resolved measurements. The drain current of the device can be maintained at 79%, compared to 61% of a reference device without TBD. Meanwhile, repeated switching tests conducted within a short on-state time demonstrate that the current collapse is confined to 10% after 500 switching cycles. The current collapse is related to electron capture at the dielectric/GaN interface, and the introduction of TBD reduces the electric field within the dielectric layer and suppresses the capture process of traps. Positive gate bias-induced threshold instability of the device with and without TBD is investigated. For the device with TBD, a small positive threshold voltage shift of 1 V is obtained. In addition, the effect of drain stressing voltage on devices is also revealed. High-resolution drain current transient spectroscopy displays the drain current reduction, attributing the degradation to captured electrons in the n--GaN layer. A capture activation energy of 0.26 eV is revealed by deep level transient spectroscopy. These findings reveal the efficacy of TBD inclusion in improving gate stability of GaN MOSFETs and underscore the critical importance of high-quality epitaxial growth for ensuring the stability of vertical devices. The stability characterization serves as a valuable reference for the development of reliable quasi-vertical GaN MOSFET devices.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.