Lucas Terrei , Hassan Flity , Oualid Ikhou , Gaspard Trohel , José Luis Torero , Zoubir Acem , Gilles Parent
{"title":"木材种类对垂直方向火灾行为的影响","authors":"Lucas Terrei , Hassan Flity , Oualid Ikhou , Gaspard Trohel , José Luis Torero , Zoubir Acem , Gilles Parent","doi":"10.1016/j.firesaf.2024.104234","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to investigate the parameters controlling auto-ignition, degradation and auto-extinction of wood. For this purpose an extensive set of experiments was conducted varying extrinsic parameters such as external heat-flux but also the type of wood. Varying the wood species allowed to explore the role of thermal properties and wood composition. Seven wood samples were tested, some light and some heavy, both hardwood and softwood. The experimental setup was based on a double-cone calorimeter, which allowed to accurately change the imposed heat flux at a predefined moment. More than 600 tests were carried out in a vertical orientation, allowing a statistical analysis. For each test, mass loss, surface temperature and in-depth temperature of the samples were measured using a precision scale, an infrared camera and thin wire thermocouples embedded using a special machining, respectively. The auto-ignition study showed that the time to auto-ignition increases linearly with density. Despite a wide range of these times to ignition, the surface temperatures at ignition were in the same order of magnitude for all species considered: between 450 and 700 °C for auto-ignition before 2 min and between 700 and 800 °C for auto-ignition after 2 min. The onset of char oxidation was observed at low heat fluxes. It occurs at different times depending on the wood species, but at similar surface temperatures, between 380 and 400 °C. The sliding double heating cone made it possible to identify the criteria for auto-extinction: the heat flux for auto-extinction can vary from 40 to 55 kW.m<sup>−2</sup> depending on the wood species, and a linear correlation was found between the mass loss rate at extinction and the initial density of each sample studied. The study highlights the dominant role of density for auto-ignition and auto-extinction.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0379711224001474/pdfft?md5=d1d9101ed3360370ed47abf860f25a5a&pid=1-s2.0-S0379711224001474-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of the wood species on the fire behavior in vertical orientation\",\"authors\":\"Lucas Terrei , Hassan Flity , Oualid Ikhou , Gaspard Trohel , José Luis Torero , Zoubir Acem , Gilles Parent\",\"doi\":\"10.1016/j.firesaf.2024.104234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study was to investigate the parameters controlling auto-ignition, degradation and auto-extinction of wood. For this purpose an extensive set of experiments was conducted varying extrinsic parameters such as external heat-flux but also the type of wood. Varying the wood species allowed to explore the role of thermal properties and wood composition. Seven wood samples were tested, some light and some heavy, both hardwood and softwood. The experimental setup was based on a double-cone calorimeter, which allowed to accurately change the imposed heat flux at a predefined moment. More than 600 tests were carried out in a vertical orientation, allowing a statistical analysis. For each test, mass loss, surface temperature and in-depth temperature of the samples were measured using a precision scale, an infrared camera and thin wire thermocouples embedded using a special machining, respectively. The auto-ignition study showed that the time to auto-ignition increases linearly with density. Despite a wide range of these times to ignition, the surface temperatures at ignition were in the same order of magnitude for all species considered: between 450 and 700 °C for auto-ignition before 2 min and between 700 and 800 °C for auto-ignition after 2 min. The onset of char oxidation was observed at low heat fluxes. It occurs at different times depending on the wood species, but at similar surface temperatures, between 380 and 400 °C. The sliding double heating cone made it possible to identify the criteria for auto-extinction: the heat flux for auto-extinction can vary from 40 to 55 kW.m<sup>−2</sup> depending on the wood species, and a linear correlation was found between the mass loss rate at extinction and the initial density of each sample studied. The study highlights the dominant role of density for auto-ignition and auto-extinction.</p></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001474/pdfft?md5=d1d9101ed3360370ed47abf860f25a5a&pid=1-s2.0-S0379711224001474-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001474\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001474","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effect of the wood species on the fire behavior in vertical orientation
The objective of this study was to investigate the parameters controlling auto-ignition, degradation and auto-extinction of wood. For this purpose an extensive set of experiments was conducted varying extrinsic parameters such as external heat-flux but also the type of wood. Varying the wood species allowed to explore the role of thermal properties and wood composition. Seven wood samples were tested, some light and some heavy, both hardwood and softwood. The experimental setup was based on a double-cone calorimeter, which allowed to accurately change the imposed heat flux at a predefined moment. More than 600 tests were carried out in a vertical orientation, allowing a statistical analysis. For each test, mass loss, surface temperature and in-depth temperature of the samples were measured using a precision scale, an infrared camera and thin wire thermocouples embedded using a special machining, respectively. The auto-ignition study showed that the time to auto-ignition increases linearly with density. Despite a wide range of these times to ignition, the surface temperatures at ignition were in the same order of magnitude for all species considered: between 450 and 700 °C for auto-ignition before 2 min and between 700 and 800 °C for auto-ignition after 2 min. The onset of char oxidation was observed at low heat fluxes. It occurs at different times depending on the wood species, but at similar surface temperatures, between 380 and 400 °C. The sliding double heating cone made it possible to identify the criteria for auto-extinction: the heat flux for auto-extinction can vary from 40 to 55 kW.m−2 depending on the wood species, and a linear correlation was found between the mass loss rate at extinction and the initial density of each sample studied. The study highlights the dominant role of density for auto-ignition and auto-extinction.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.