喷入氨气和布朗气对生物炭替代下铁矿石烧结特性的影响

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL Particuology Pub Date : 2024-08-02 DOI:10.1016/j.partic.2024.07.015
Laiquan Lv, Jiankang Wang, Hanxiao Meng, Hao Zhou
{"title":"喷入氨气和布朗气对生物炭替代下铁矿石烧结特性的影响","authors":"Laiquan Lv,&nbsp;Jiankang Wang,&nbsp;Hanxiao Meng,&nbsp;Hao Zhou","doi":"10.1016/j.partic.2024.07.015","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of ammonia and Brown gas injection on the iron ore sintering characteristics was explored through sintering pot experiments based on biochar substitution to increase biochar substitution proportion and reduce fossil energy consumption. By dividing the high-temperature stage of the sintering bed, the heating rate and cooling rate were calculated, and the reasons for poor sintering quality under a high biochar substitution ratio were explored. The results showed that under the 40% biochar substitution ratio, the cooling rate of the sintering bed significantly increased, the high-temperature duration time was short, and the sintering quality deteriorated severely. Additional injection of 0.5–1% vol ammonia or 1–2% vol Brown gas can reduce the cooling rate, prolong the high-temperature duration, and optimize the sintering quality. Based on 1% vol ammonia or 2% vol Brown gas injection, reducing the proportion of biochar with equal calorific value further increases the sintering comprehensive index, which means that using 1% vol ammonia or 2% vol Brown gas injection to assist sintering can reduce the proportion of coke usage to 60%, while the proportion of biochar substitution is 33.76% and 32.47%, respectively. The research results provide an effective solution for low-carbon sintering.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 16-28"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of ammonia and Brown gas injection on the iron ore sintering characteristics under biochar substitution\",\"authors\":\"Laiquan Lv,&nbsp;Jiankang Wang,&nbsp;Hanxiao Meng,&nbsp;Hao Zhou\",\"doi\":\"10.1016/j.partic.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of ammonia and Brown gas injection on the iron ore sintering characteristics was explored through sintering pot experiments based on biochar substitution to increase biochar substitution proportion and reduce fossil energy consumption. By dividing the high-temperature stage of the sintering bed, the heating rate and cooling rate were calculated, and the reasons for poor sintering quality under a high biochar substitution ratio were explored. The results showed that under the 40% biochar substitution ratio, the cooling rate of the sintering bed significantly increased, the high-temperature duration time was short, and the sintering quality deteriorated severely. Additional injection of 0.5–1% vol ammonia or 1–2% vol Brown gas can reduce the cooling rate, prolong the high-temperature duration, and optimize the sintering quality. Based on 1% vol ammonia or 2% vol Brown gas injection, reducing the proportion of biochar with equal calorific value further increases the sintering comprehensive index, which means that using 1% vol ammonia or 2% vol Brown gas injection to assist sintering can reduce the proportion of coke usage to 60%, while the proportion of biochar substitution is 33.76% and 32.47%, respectively. The research results provide an effective solution for low-carbon sintering.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"94 \",\"pages\":\"Pages 16-28\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001433\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001433","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过基于生物炭替代的烧结锅实验,探讨了氨气和布朗气喷入对铁矿石烧结特性的影响,以提高生物炭替代比例,降低化石能源消耗。通过对烧结床高温阶段的划分,计算了升温速率和降温速率,探讨了高生物炭替代比例下烧结质量差的原因。结果表明,在生物炭替代率为 40% 的情况下,烧结床的冷却速率显著增加,高温持续时间短,烧结质量严重下降。额外注入 0.5-1% 体积的氨气或 1-2% 体积的布朗气体可以降低冷却速率,延长高温持续时间,优化烧结质量。在喷入 1%体积氨气或 2%体积布朗气的基础上,减少等热值生物炭的比例,可进一步提高烧结综合指数,即喷入 1%体积氨气或 2%体积布朗气辅助烧结,可将焦炭用量比例降至 60%,而生物炭替代比例分别为 33.76%和 32.47%。研究成果为低碳烧结提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of ammonia and Brown gas injection on the iron ore sintering characteristics under biochar substitution

The influence of ammonia and Brown gas injection on the iron ore sintering characteristics was explored through sintering pot experiments based on biochar substitution to increase biochar substitution proportion and reduce fossil energy consumption. By dividing the high-temperature stage of the sintering bed, the heating rate and cooling rate were calculated, and the reasons for poor sintering quality under a high biochar substitution ratio were explored. The results showed that under the 40% biochar substitution ratio, the cooling rate of the sintering bed significantly increased, the high-temperature duration time was short, and the sintering quality deteriorated severely. Additional injection of 0.5–1% vol ammonia or 1–2% vol Brown gas can reduce the cooling rate, prolong the high-temperature duration, and optimize the sintering quality. Based on 1% vol ammonia or 2% vol Brown gas injection, reducing the proportion of biochar with equal calorific value further increases the sintering comprehensive index, which means that using 1% vol ammonia or 2% vol Brown gas injection to assist sintering can reduce the proportion of coke usage to 60%, while the proportion of biochar substitution is 33.76% and 32.47%, respectively. The research results provide an effective solution for low-carbon sintering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
期刊最新文献
Mesoscale modeling on the influence of surfactants on seepage law during water injection in coal Optimisation of parameters of a dual-axis soil remediation device based on response surface methodology and machine learning algorithm Study of hydraulic transport characteristics and erosion wear of twisted four-lobed pipe based on CFD-DEM A comprehensive numerical investigation of the spray characteristics in spill-return atomizers using coupled VOF and Euler-Lagrange approach Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1