Lingchong Feng , Dongwei Jia , Xiangjin Liang , Jun Lu , Yapeng Chen , Jun Liu , Baoying Wang , Zhao Li , Yulun Wu , Jun Cheng
{"title":"调节功能性代谢途径可提高四叶草细胞的耐热性和生物量积累","authors":"Lingchong Feng , Dongwei Jia , Xiangjin Liang , Jun Lu , Yapeng Chen , Jun Liu , Baoying Wang , Zhao Li , Yulun Wu , Jun Cheng","doi":"10.1016/j.bej.2024.109455","DOIUrl":null,"url":null,"abstract":"<div><p>To improve heat tolerance and biomass yield of microalgae cells cultivated with flue gas in power plants in South China in summer, <em>Scenedesmus quadricauda</em> cells were cultivated at various temperatures to regulate functional metabolic pathways. The microalgae biomass production was 26 % higher at 35°C than at 25°C. The expression of photosynthesis-related proteins was up-regulated by 14.3 %, enhancing electron transfer efficiency and oxygen release rate at photosynthetic carbon fixation. Furthermore, microalgal cells absorbed more sulfur to enhance sulfur metabolism. The extracellular polymeric substances (EPS) content increased by 2.71-fold, improving the survival activity under high-temperature stress. The up-regulation of lysosomes and hydrogenases promoted the cellular removal of metabolic wastes and damaged organelles and improved the antioxidant defense capacity. Moreover, the microalgal cells maintained normal growth at 40°C through a self-regulatory mechanism. In contrast, the photosynthetic carbon fixation of microalgae cells was strongly inhibited at 42°C. This study revealed the adaptive mechanism of cellular carbon fixation in microalgae at high temperatures, which improved the high-temperature tolerance and biomass production of microalgae.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109455"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation in functional metabolic pathways improves heat tolerance and biomass accumulation of Scenedesmus quadricauda cells\",\"authors\":\"Lingchong Feng , Dongwei Jia , Xiangjin Liang , Jun Lu , Yapeng Chen , Jun Liu , Baoying Wang , Zhao Li , Yulun Wu , Jun Cheng\",\"doi\":\"10.1016/j.bej.2024.109455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve heat tolerance and biomass yield of microalgae cells cultivated with flue gas in power plants in South China in summer, <em>Scenedesmus quadricauda</em> cells were cultivated at various temperatures to regulate functional metabolic pathways. The microalgae biomass production was 26 % higher at 35°C than at 25°C. The expression of photosynthesis-related proteins was up-regulated by 14.3 %, enhancing electron transfer efficiency and oxygen release rate at photosynthetic carbon fixation. Furthermore, microalgal cells absorbed more sulfur to enhance sulfur metabolism. The extracellular polymeric substances (EPS) content increased by 2.71-fold, improving the survival activity under high-temperature stress. The up-regulation of lysosomes and hydrogenases promoted the cellular removal of metabolic wastes and damaged organelles and improved the antioxidant defense capacity. Moreover, the microalgal cells maintained normal growth at 40°C through a self-regulatory mechanism. In contrast, the photosynthetic carbon fixation of microalgae cells was strongly inhibited at 42°C. This study revealed the adaptive mechanism of cellular carbon fixation in microalgae at high temperatures, which improved the high-temperature tolerance and biomass production of microalgae.</p></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"211 \",\"pages\":\"Article 109455\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24002420\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002420","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Regulation in functional metabolic pathways improves heat tolerance and biomass accumulation of Scenedesmus quadricauda cells
To improve heat tolerance and biomass yield of microalgae cells cultivated with flue gas in power plants in South China in summer, Scenedesmus quadricauda cells were cultivated at various temperatures to regulate functional metabolic pathways. The microalgae biomass production was 26 % higher at 35°C than at 25°C. The expression of photosynthesis-related proteins was up-regulated by 14.3 %, enhancing electron transfer efficiency and oxygen release rate at photosynthetic carbon fixation. Furthermore, microalgal cells absorbed more sulfur to enhance sulfur metabolism. The extracellular polymeric substances (EPS) content increased by 2.71-fold, improving the survival activity under high-temperature stress. The up-regulation of lysosomes and hydrogenases promoted the cellular removal of metabolic wastes and damaged organelles and improved the antioxidant defense capacity. Moreover, the microalgal cells maintained normal growth at 40°C through a self-regulatory mechanism. In contrast, the photosynthetic carbon fixation of microalgae cells was strongly inhibited at 42°C. This study revealed the adaptive mechanism of cellular carbon fixation in microalgae at high temperatures, which improved the high-temperature tolerance and biomass production of microalgae.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.