{"title":"利用 NR-PBFT 和 IoV-IMS 为海洋渔船提供基于区块链的冷链可追溯性","authors":"Zheng Zhang, Haonan Zhu, Hejun Liang","doi":"10.3390/jmse12081371","DOIUrl":null,"url":null,"abstract":"Due to limited communication, computing resources, and unstable environments, traditional cold chain traceability systems are difficult to apply directly to marine cold chain traceability scenarios. Motivated by these challenges, we construct an improved blockchain-based cold chain traceability system for marine fishery vessels. Firstly, an Internet of Vessels system based on the Iridium Satellites (IoV-IMS) is proposed for marine cold chain monitoring. Aiming at the problems of low throughput, long transaction latency, and high communication overhead in traditional cold chain traceability systems, based on the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm, a Node-grouped and Reputation-evaluated PBFT (NR-PBFT) is proposed to improve the reliability and robustness of blockchain system. In NR-PBFT, an improved node grouping scheme is designed, which introduces a consistent hashing algorithm to divide nodes into consensus and candidate sets, reducing the number of nodes participating in the consensus process, to lower communication overhead and transaction latency. Then, a reputation evaluation model is proposed to improve the node selection mechanism of NR-PBFT. It enhances the enthusiasm of nodes to participate in consensus, which considers the distance between fishery vessels, data size, and refrigeration temperature factors of nodes to increase throughput. Finally, we carried out experiments on marine fishery vessels, and the effectiveness of the cold chain traceability system and NR-PBFT were verified. Compared with PBFT, the transaction latency of NR-PBFT shortened by 81.92%, the throughput increased by 84.21%, and the communication overhead decreased by 89.4%.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockchain-Based Cold Chain Traceability with NR-PBFT and IoV-IMS for Marine Fishery Vessels\",\"authors\":\"Zheng Zhang, Haonan Zhu, Hejun Liang\",\"doi\":\"10.3390/jmse12081371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to limited communication, computing resources, and unstable environments, traditional cold chain traceability systems are difficult to apply directly to marine cold chain traceability scenarios. Motivated by these challenges, we construct an improved blockchain-based cold chain traceability system for marine fishery vessels. Firstly, an Internet of Vessels system based on the Iridium Satellites (IoV-IMS) is proposed for marine cold chain monitoring. Aiming at the problems of low throughput, long transaction latency, and high communication overhead in traditional cold chain traceability systems, based on the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm, a Node-grouped and Reputation-evaluated PBFT (NR-PBFT) is proposed to improve the reliability and robustness of blockchain system. In NR-PBFT, an improved node grouping scheme is designed, which introduces a consistent hashing algorithm to divide nodes into consensus and candidate sets, reducing the number of nodes participating in the consensus process, to lower communication overhead and transaction latency. Then, a reputation evaluation model is proposed to improve the node selection mechanism of NR-PBFT. It enhances the enthusiasm of nodes to participate in consensus, which considers the distance between fishery vessels, data size, and refrigeration temperature factors of nodes to increase throughput. Finally, we carried out experiments on marine fishery vessels, and the effectiveness of the cold chain traceability system and NR-PBFT were verified. Compared with PBFT, the transaction latency of NR-PBFT shortened by 81.92%, the throughput increased by 84.21%, and the communication overhead decreased by 89.4%.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12081371\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081371","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Blockchain-Based Cold Chain Traceability with NR-PBFT and IoV-IMS for Marine Fishery Vessels
Due to limited communication, computing resources, and unstable environments, traditional cold chain traceability systems are difficult to apply directly to marine cold chain traceability scenarios. Motivated by these challenges, we construct an improved blockchain-based cold chain traceability system for marine fishery vessels. Firstly, an Internet of Vessels system based on the Iridium Satellites (IoV-IMS) is proposed for marine cold chain monitoring. Aiming at the problems of low throughput, long transaction latency, and high communication overhead in traditional cold chain traceability systems, based on the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm, a Node-grouped and Reputation-evaluated PBFT (NR-PBFT) is proposed to improve the reliability and robustness of blockchain system. In NR-PBFT, an improved node grouping scheme is designed, which introduces a consistent hashing algorithm to divide nodes into consensus and candidate sets, reducing the number of nodes participating in the consensus process, to lower communication overhead and transaction latency. Then, a reputation evaluation model is proposed to improve the node selection mechanism of NR-PBFT. It enhances the enthusiasm of nodes to participate in consensus, which considers the distance between fishery vessels, data size, and refrigeration temperature factors of nodes to increase throughput. Finally, we carried out experiments on marine fishery vessels, and the effectiveness of the cold chain traceability system and NR-PBFT were verified. Compared with PBFT, the transaction latency of NR-PBFT shortened by 81.92%, the throughput increased by 84.21%, and the communication overhead decreased by 89.4%.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.