{"title":"船舶轨迹预测,加强海上航行安全:新型混合方法","authors":"Yuhao Li, Qing Yu, Zhisen Yang","doi":"10.3390/jmse12081351","DOIUrl":null,"url":null,"abstract":"The accurate prediction of vessel trajectory is of crucial importance in order to improve navigational efficiency, optimize routes, enhance the effectiveness of search and rescue operations at sea, and ensure maritime safety. However, the spatial interaction among vessels can have a certain impact on the prediction accuracy of the models. To overcome such a problem in predicting the vessel trajectory, this research proposes a novel hybrid methodology incorporating the graph attention network (GAT) and long short-term memory network (LSTM). The proposed GAT-LSTM model can comprehensively consider spatio-temporal features in the prediction process, which is expected to significantly improve the accuracy and robustness of the trajectory prediction. The Automatic Identification System (AIS) data from the surrounding waters of Xiamen Port is collected and utilized as the empirical case for model validation. The experimental results demonstrate that the GAT-LSTM model outperforms the best baseline model in terms of the reduction on the average displacement error and final displacement error, which are 44.52% and 56.20%, respectively. These improvements will translate into more accurate vessel trajectories, helping to minimize route deviations and improve the accuracy of collision avoidance systems, so that this research can effectively provide support for warning about potential collisions and reducing the risk of maritime accidents.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vessel Trajectory Prediction for Enhanced Maritime Navigation Safety: A Novel Hybrid Methodology\",\"authors\":\"Yuhao Li, Qing Yu, Zhisen Yang\",\"doi\":\"10.3390/jmse12081351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate prediction of vessel trajectory is of crucial importance in order to improve navigational efficiency, optimize routes, enhance the effectiveness of search and rescue operations at sea, and ensure maritime safety. However, the spatial interaction among vessels can have a certain impact on the prediction accuracy of the models. To overcome such a problem in predicting the vessel trajectory, this research proposes a novel hybrid methodology incorporating the graph attention network (GAT) and long short-term memory network (LSTM). The proposed GAT-LSTM model can comprehensively consider spatio-temporal features in the prediction process, which is expected to significantly improve the accuracy and robustness of the trajectory prediction. The Automatic Identification System (AIS) data from the surrounding waters of Xiamen Port is collected and utilized as the empirical case for model validation. The experimental results demonstrate that the GAT-LSTM model outperforms the best baseline model in terms of the reduction on the average displacement error and final displacement error, which are 44.52% and 56.20%, respectively. These improvements will translate into more accurate vessel trajectories, helping to minimize route deviations and improve the accuracy of collision avoidance systems, so that this research can effectively provide support for warning about potential collisions and reducing the risk of maritime accidents.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12081351\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081351","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Vessel Trajectory Prediction for Enhanced Maritime Navigation Safety: A Novel Hybrid Methodology
The accurate prediction of vessel trajectory is of crucial importance in order to improve navigational efficiency, optimize routes, enhance the effectiveness of search and rescue operations at sea, and ensure maritime safety. However, the spatial interaction among vessels can have a certain impact on the prediction accuracy of the models. To overcome such a problem in predicting the vessel trajectory, this research proposes a novel hybrid methodology incorporating the graph attention network (GAT) and long short-term memory network (LSTM). The proposed GAT-LSTM model can comprehensively consider spatio-temporal features in the prediction process, which is expected to significantly improve the accuracy and robustness of the trajectory prediction. The Automatic Identification System (AIS) data from the surrounding waters of Xiamen Port is collected and utilized as the empirical case for model validation. The experimental results demonstrate that the GAT-LSTM model outperforms the best baseline model in terms of the reduction on the average displacement error and final displacement error, which are 44.52% and 56.20%, respectively. These improvements will translate into more accurate vessel trajectories, helping to minimize route deviations and improve the accuracy of collision avoidance systems, so that this research can effectively provide support for warning about potential collisions and reducing the risk of maritime accidents.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.