用于树突棘分析的 FAIR 开源虚拟现实平台

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-08-12 DOI:10.1016/j.patter.2024.101041
{"title":"用于树突棘分析的 FAIR 开源虚拟现实平台","authors":"","doi":"10.1016/j.patter.2024.101041","DOIUrl":null,"url":null,"abstract":"<p>Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual reality (VR) structural analysis software ecosystem (coined “VR-SASE”) that offers a powerful, intuitive approach for analyzing dendritic spines. Our validation process confirmed the method’s superior accuracy, outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE workflow automatically calculates key morphological metrics, such as dendritic spine length, volume, and surface area, and reliably replicates established datasets from published dendritic spine studies. By integrating the Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through DANDI Archives, satisfying the NIH data sharing mandate.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FAIR, open-source virtual reality platform for dendritic spine analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.patter.2024.101041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual reality (VR) structural analysis software ecosystem (coined “VR-SASE”) that offers a powerful, intuitive approach for analyzing dendritic spines. Our validation process confirmed the method’s superior accuracy, outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE workflow automatically calculates key morphological metrics, such as dendritic spine length, volume, and surface area, and reliably replicates established datasets from published dendritic spine studies. By integrating the Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through DANDI Archives, satisfying the NIH data sharing mandate.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经解剖学是了解神经系统,特别是树突棘的基础,树突棘对突触传递和对损伤或疾病的反应变化至关重要。成像技术的进步使这些结构的详细三维(3D)可视化成为可能。然而,现有的树突棘形态分析工具非常有限。为了解决这个问题,我们开发了一个开源虚拟现实(VR)结构分析软件生态系统(被称为 "VR-SASE"),它为树突棘的分析提供了一种强大、直观的方法。我们的验证过程证实了该方法的卓越准确性,超过了公认的黄金标准神经重建技术。重要的是,VR-SASE 工作流程能自动计算树突棘长度、体积和表面积等关键形态指标,并可靠地复制已发表的树突棘研究数据集。通过整合神经数据无国界(NWB)数据标准,VR-SASE 数据集可以通过 DANDI 档案馆保存/分发,从而满足美国国立卫生研究院的数据共享要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A FAIR, open-source virtual reality platform for dendritic spine analysis

Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual reality (VR) structural analysis software ecosystem (coined “VR-SASE”) that offers a powerful, intuitive approach for analyzing dendritic spines. Our validation process confirmed the method’s superior accuracy, outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE workflow automatically calculates key morphological metrics, such as dendritic spine length, volume, and surface area, and reliably replicates established datasets from published dendritic spine studies. By integrating the Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through DANDI Archives, satisfying the NIH data sharing mandate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1