产生用于超快激发雷德贝格原子的 480 纳米皮秒脉冲

Tirumalasetty Panduranga Mahesh, Takuya Matsubara, Yuki Torii Chew, Takafumi Tomita, Sylvain de Léséleuc, Kenji Ohmori
{"title":"产生用于超快激发雷德贝格原子的 480 纳米皮秒脉冲","authors":"Tirumalasetty Panduranga Mahesh, Takuya Matsubara, Yuki Torii Chew, Takafumi Tomita, Sylvain de Léséleuc, Kenji Ohmori","doi":"arxiv-2408.02324","DOIUrl":null,"url":null,"abstract":"Atoms in Rydberg states are an important building block for emerging quantum\ntechnologies. While the excitation to the Rydberg orbitals are typically\nachieved in more than tens of nanoseconds, the physical limit is in fact much\nfaster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg\nexcitation of a Rubidium atom by designing a dedicated pulsed laser system\ngenerating 480 nm pulses of 10 ps duration. In particular, we improved upon our\nprevious design by using an injection-seeded optical parametric amplifier (OPA)\nto obtain stable pulsed energy, decreasing the fluctuation from 30 % to 6 %. We\nthen succeeded in ultrafast excitation of Rydberg atoms with excitation\nprobability of ~90 %, not limited anymore by energy fluctuation but rather by\nthe atomic state preparation, addressable in future works. This achievement\nbroadens the range of applications of Rydberg atoms.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of 480 nm picosecond pulses for ultrafast excitation of Rydberg atoms\",\"authors\":\"Tirumalasetty Panduranga Mahesh, Takuya Matsubara, Yuki Torii Chew, Takafumi Tomita, Sylvain de Léséleuc, Kenji Ohmori\",\"doi\":\"arxiv-2408.02324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atoms in Rydberg states are an important building block for emerging quantum\\ntechnologies. While the excitation to the Rydberg orbitals are typically\\nachieved in more than tens of nanoseconds, the physical limit is in fact much\\nfaster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg\\nexcitation of a Rubidium atom by designing a dedicated pulsed laser system\\ngenerating 480 nm pulses of 10 ps duration. In particular, we improved upon our\\nprevious design by using an injection-seeded optical parametric amplifier (OPA)\\nto obtain stable pulsed energy, decreasing the fluctuation from 30 % to 6 %. We\\nthen succeeded in ultrafast excitation of Rydberg atoms with excitation\\nprobability of ~90 %, not limited anymore by energy fluctuation but rather by\\nthe atomic state preparation, addressable in future works. This achievement\\nbroadens the range of applications of Rydberg atoms.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处于雷德贝格状态的原子是新兴量子技术的重要组成部分。虽然激发到 Rydberg 轨道的时间通常在数十纳秒以上,但物理极限实际上要快得多,达到十皮秒级别。在这里,我们通过设计一种专用脉冲激光系统,产生持续时间为 10 ps 的 480 nm 脉冲,解决了铷原子的超快铷原子激发问题。我们特别改进了之前的设计,使用注入式光参量放大器(OPA)获得稳定的脉冲能量,将波动从 30% 降低到 6%。Wethen 成功实现了对雷德贝格原子的超快激发,激发概率达到约 90%,不再受能量波动的限制,而是受原子态制备的限制,这将在未来的工作中加以解决。这一成果拓宽了雷德贝格原子的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of 480 nm picosecond pulses for ultrafast excitation of Rydberg atoms
Atoms in Rydberg states are an important building block for emerging quantum technologies. While the excitation to the Rydberg orbitals are typically achieved in more than tens of nanoseconds, the physical limit is in fact much faster, at the ten picoseconds level. Here, we tackle such ultrafast Rydberg excitation of a Rubidium atom by designing a dedicated pulsed laser system generating 480 nm pulses of 10 ps duration. In particular, we improved upon our previous design by using an injection-seeded optical parametric amplifier (OPA) to obtain stable pulsed energy, decreasing the fluctuation from 30 % to 6 %. We then succeeded in ultrafast excitation of Rydberg atoms with excitation probability of ~90 %, not limited anymore by energy fluctuation but rather by the atomic state preparation, addressable in future works. This achievement broadens the range of applications of Rydberg atoms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrashort laser-induced nuclear reactions: initiating decay of helium nuclei and subsequent fusion reactions All-optical Fourier neural network using partially coherent light Mapping the nanoscale optical topological textures with a fiber-integrated plasmonic probe Low-loss twist-tunable in-plane anisotropic polaritonic crystals Ultra-wideband integrated microwave photonic multi-parameter measurement system on thin-film lithium niobate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1