Al2O3-Cu 混合纳米流体在不同三角筋结构管道中的流动和传热特性

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-08-06 DOI:10.1007/s10973-024-13473-1
Hussein Togun, Raad Z. Homod, Hakim S. Sultan Aljibori, Azher M. Abed, Hajar Alias, Ahmed Kadhim Hussein, Uddhaba Biswal, Mohaimen Al-Thamir, Jasim M. Mahdi, Hayder I. Mohammed, Goodarz Ahmadi
{"title":"Al2O3-Cu 混合纳米流体在不同三角筋结构管道中的流动和传热特性","authors":"Hussein Togun, Raad Z. Homod, Hakim S. Sultan Aljibori, Azher M. Abed, Hajar Alias, Ahmed Kadhim Hussein, Uddhaba Biswal, Mohaimen Al-Thamir, Jasim M. Mahdi, Hayder I. Mohammed, Goodarz Ahmadi","doi":"10.1007/s10973-024-13473-1","DOIUrl":null,"url":null,"abstract":"<p>This study examines the turbulent heat transfer characteristics of Al<sub>2</sub>O<sub>3</sub>–Cu hybrid nanofluids in circular ducts with triangular rib configurations. Numerical simulations were conducted for a 25 cm long, -cm high duct with walls maintained at 313 K. Hybrid nanofluids enter at 298 K, with triangular ribs on the internal surface at three attack angles (45°, 60°, and 90°) spaced 20 mm apart. Al2O<sub>3</sub>–Cu/H<sub>2</sub>O hybrid nanofluids at concentrations of 0.1–2 vol.% were investigated for Reynolds numbers between 20,000 and 60,000. The study aimed to determine the optimal rib configuration and nanofluid concentration for enhancing heat transfer while minimizing friction losses. Key findings include: (1) the 60° rib configuration produced the highest local heat transfer coefficient, with the maximum occurring at the rib centers. (2) Increasing nanofluid concentration and Reynolds number enhanced heat transfer but reduced skin friction. (3) The optimal performance was achieved with 2 vol.% Al<sub>2</sub>O<sub>3</sub>–Cu at Re = 60,000. (4) Velocity contours revealed larger recirculation zones for 60° ribs compared to 45° and 90° configurations. (5) Turbulent kinetic energy was highest for 60° ribs, contributing to enhanced thermal performance. These findings have implications for improving the efficiency of heat exchangers, cooling systems, and other thermal management applications.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"48 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Al2O3–Cu hybrid nanofluid flow and heat transfer characteristics in the duct with various triangular rib configurations\",\"authors\":\"Hussein Togun, Raad Z. Homod, Hakim S. Sultan Aljibori, Azher M. Abed, Hajar Alias, Ahmed Kadhim Hussein, Uddhaba Biswal, Mohaimen Al-Thamir, Jasim M. Mahdi, Hayder I. Mohammed, Goodarz Ahmadi\",\"doi\":\"10.1007/s10973-024-13473-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the turbulent heat transfer characteristics of Al<sub>2</sub>O<sub>3</sub>–Cu hybrid nanofluids in circular ducts with triangular rib configurations. Numerical simulations were conducted for a 25 cm long, -cm high duct with walls maintained at 313 K. Hybrid nanofluids enter at 298 K, with triangular ribs on the internal surface at three attack angles (45°, 60°, and 90°) spaced 20 mm apart. Al2O<sub>3</sub>–Cu/H<sub>2</sub>O hybrid nanofluids at concentrations of 0.1–2 vol.% were investigated for Reynolds numbers between 20,000 and 60,000. The study aimed to determine the optimal rib configuration and nanofluid concentration for enhancing heat transfer while minimizing friction losses. Key findings include: (1) the 60° rib configuration produced the highest local heat transfer coefficient, with the maximum occurring at the rib centers. (2) Increasing nanofluid concentration and Reynolds number enhanced heat transfer but reduced skin friction. (3) The optimal performance was achieved with 2 vol.% Al<sub>2</sub>O<sub>3</sub>–Cu at Re = 60,000. (4) Velocity contours revealed larger recirculation zones for 60° ribs compared to 45° and 90° configurations. (5) Turbulent kinetic energy was highest for 60° ribs, contributing to enhanced thermal performance. These findings have implications for improving the efficiency of heat exchangers, cooling systems, and other thermal management applications.</p>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10973-024-13473-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13473-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了 Al2O3-Cu 混合纳米流体在具有三角肋配置的圆形管道中的湍流传热特性。混合纳米流体在 298 K 温度下进入,内表面有三个攻击角(45°、60° 和 90°)的三角形肋条,间距为 20 毫米。在雷诺数介于 20,000 和 60,000 之间时,对浓度为 0.1-2 Vol.% 的 Al2O3-Cu/H2O 混合纳米流体进行了研究。该研究旨在确定最佳肋片配置和纳米流体浓度,以增强传热,同时最大限度地减少摩擦损失。主要发现包括(1) 60° 肋骨配置产生了最高的局部传热系数,最大值出现在肋骨中心。(2) 提高纳米流体浓度和雷诺数可增强传热效果,但会降低表皮摩擦。(3) 在 Re = 60,000 条件下,2 vol.% Al2O3-Cu 实现了最佳性能。(4) 流速等值线显示,与 45° 和 90° 结构相比,60°肋片的再循环区域更大。(5) 60°肋条的湍流动能最大,有助于提高热性能。这些发现对提高热交换器、冷却系统和其他热管理应用的效率具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al2O3–Cu hybrid nanofluid flow and heat transfer characteristics in the duct with various triangular rib configurations

This study examines the turbulent heat transfer characteristics of Al2O3–Cu hybrid nanofluids in circular ducts with triangular rib configurations. Numerical simulations were conducted for a 25 cm long, -cm high duct with walls maintained at 313 K. Hybrid nanofluids enter at 298 K, with triangular ribs on the internal surface at three attack angles (45°, 60°, and 90°) spaced 20 mm apart. Al2O3–Cu/H2O hybrid nanofluids at concentrations of 0.1–2 vol.% were investigated for Reynolds numbers between 20,000 and 60,000. The study aimed to determine the optimal rib configuration and nanofluid concentration for enhancing heat transfer while minimizing friction losses. Key findings include: (1) the 60° rib configuration produced the highest local heat transfer coefficient, with the maximum occurring at the rib centers. (2) Increasing nanofluid concentration and Reynolds number enhanced heat transfer but reduced skin friction. (3) The optimal performance was achieved with 2 vol.% Al2O3–Cu at Re = 60,000. (4) Velocity contours revealed larger recirculation zones for 60° ribs compared to 45° and 90° configurations. (5) Turbulent kinetic energy was highest for 60° ribs, contributing to enhanced thermal performance. These findings have implications for improving the efficiency of heat exchangers, cooling systems, and other thermal management applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Thermal characterization of plat heat exchanger made from polymer biocomposite reinforced by silicon carbide Recent advances in thermal analysis and calorimetry presented at the 3rd Journal of Thermal Analysis and Calorimetry Conference and 9th V4 (Joint Czech–Hungarian–Polish–Slovakian) Thermoanalytical Conference (2023) Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature Review about the history of thermal analysis in Hungary Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1