逐层涂覆的纤维素可降低聚氨酯泡沫生物复合材料的火灾风险

IF 6.3 2区 化学 Q1 POLYMER SCIENCE Polymer Degradation and Stability Pub Date : 2024-07-30 DOI:10.1016/j.polymdegradstab.2024.110935
{"title":"逐层涂覆的纤维素可降低聚氨酯泡沫生物复合材料的火灾风险","authors":"","doi":"10.1016/j.polymdegradstab.2024.110935","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose implementation as filler in polyurethane foams (PUF) often leads to an increased the fire risk associated to the prepared biocomposite. To address this problem, this paper presents a novel approach where the cellulose filler is coated by a nanostructured layer-by-layer (LbL) assembly with flame retardant characteristics before its addition to the biocomposite. During PUF production, the presence of cellulose led to a reduced cell size distribution with improved thermal insulation properties. By forced combustion tests, the use of neat cellulose produced a detrimental effect by increasing the PUF heat release rates (up to +21 %). Conversely, the coated cellulose simultaneously decreased the peak of heat release rate (-22 %) and the total smoke release (-32 %) if compared with the reference PUF. The proposed approach represents a viable strategy for the production of PUF biocomposites where sustainability and fire protection are optimized.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141391024002799/pdfft?md5=1f34f58234f8c9318c0284f60735a1d0&pid=1-s2.0-S0141391024002799-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Layer-by-layer coated cellulose reduces the fire risk of polyurethane foam biocomposites\",\"authors\":\"\",\"doi\":\"10.1016/j.polymdegradstab.2024.110935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellulose implementation as filler in polyurethane foams (PUF) often leads to an increased the fire risk associated to the prepared biocomposite. To address this problem, this paper presents a novel approach where the cellulose filler is coated by a nanostructured layer-by-layer (LbL) assembly with flame retardant characteristics before its addition to the biocomposite. During PUF production, the presence of cellulose led to a reduced cell size distribution with improved thermal insulation properties. By forced combustion tests, the use of neat cellulose produced a detrimental effect by increasing the PUF heat release rates (up to +21 %). Conversely, the coated cellulose simultaneously decreased the peak of heat release rate (-22 %) and the total smoke release (-32 %) if compared with the reference PUF. The proposed approach represents a viable strategy for the production of PUF biocomposites where sustainability and fire protection are optimized.</p></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141391024002799/pdfft?md5=1f34f58234f8c9318c0284f60735a1d0&pid=1-s2.0-S0141391024002799-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024002799\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024002799","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在聚氨酯泡沫(PUF)中使用纤维素作为填料往往会增加所制备生物复合材料的火灾风险。为解决这一问题,本文提出了一种新方法,即在纤维素填料加入生物复合材料之前,先用具有阻燃特性的纳米结构逐层(LbL)组件对其进行涂层。在生产聚氨酯泡沫塑料的过程中,纤维素的存在导致了细胞尺寸分布的缩小,并改善了隔热性能。通过强制燃烧测试,使用纯纤维素会增加聚氨酯泡沫的热释放率(最高达 +21%),从而产生不利影响。相反,与参考聚氨酯泡沫相比,涂覆纤维素同时降低了热释放率峰值(-22%)和总烟雾释放量(-32%)。所提出的方法是生产聚氨酯生物复合材料的一种可行策略,可以优化可持续性和防火性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layer-by-layer coated cellulose reduces the fire risk of polyurethane foam biocomposites

Cellulose implementation as filler in polyurethane foams (PUF) often leads to an increased the fire risk associated to the prepared biocomposite. To address this problem, this paper presents a novel approach where the cellulose filler is coated by a nanostructured layer-by-layer (LbL) assembly with flame retardant characteristics before its addition to the biocomposite. During PUF production, the presence of cellulose led to a reduced cell size distribution with improved thermal insulation properties. By forced combustion tests, the use of neat cellulose produced a detrimental effect by increasing the PUF heat release rates (up to +21 %). Conversely, the coated cellulose simultaneously decreased the peak of heat release rate (-22 %) and the total smoke release (-32 %) if compared with the reference PUF. The proposed approach represents a viable strategy for the production of PUF biocomposites where sustainability and fire protection are optimized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Degradation and Stability
Polymer Degradation and Stability 化学-高分子科学
CiteScore
10.10
自引率
10.20%
发文量
325
审稿时长
23 days
期刊介绍: Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology. Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal. However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.
期刊最新文献
Flammability degradation behavior and ageing mechanism of flame-retardant cable sheath under different ageing conditions Oxygen-induced surface hardening and aromatization of thermoset furanic biobased resin: Origin and consequences Development of flame retardant coatings containing hexaphenoxycyclotriphosphazene and expandable graphite for carbon fibre-reinforced polyamide 6 composites Arc-shaped air layer bioinspired by ginkgo nut to resist high humidity environment for PET fabrics Flame-retardants for polypropylene: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1