利用 5 纳米以下超薄绝缘体推进全硅 MOSCAP 环形调制器的发展

IF 4.1 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Lightwave Technology Pub Date : 2024-08-07 DOI:10.1109/JLT.2024.3440040
Tzu-Yun Chang;Martin Ebert;Ke Li;Junbo Zhu;Xingzhao Yan;Han Du;Mehdi Banakar;Dehn T. Tran;Callum G. Littlejohns;Adam Scofield;Guomin Yu;Roshanak Shafiiha;Aaron Zilkie;Graham T. Reed;David J. Thomson;Weiwei Zhang
{"title":"利用 5 纳米以下超薄绝缘体推进全硅 MOSCAP 环形调制器的发展","authors":"Tzu-Yun Chang;Martin Ebert;Ke Li;Junbo Zhu;Xingzhao Yan;Han Du;Mehdi Banakar;Dehn T. Tran;Callum G. Littlejohns;Adam Scofield;Guomin Yu;Roshanak Shafiiha;Aaron Zilkie;Graham T. Reed;David J. Thomson;Weiwei Zhang","doi":"10.1109/JLT.2024.3440040","DOIUrl":null,"url":null,"abstract":"We demonstrate silicon/SiO\n<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\n/polysilicon lateral MOS-Capacitor (MOSCAP) RRM operating above 50 GHz with modulation amplitude enhanced by a large plasma absorption within the MOS junction. A MOSCAP ring resonator modulator (RRM) model has been built using Lumerical software, in which the plasma effect is defined by adopting a reported superlinear rather than linear plasma absorption equation, which aligns well with our experimental results. The performance of the MOSCAP RRMs has been analyzed with different thicknesses of insulator oxide (\n<inline-formula><tex-math>$t_{\\text{ox}}$</tex-math></inline-formula>\n). The modulation performance is enhanced with thinner \n<inline-formula><tex-math>$t_{\\text{ox}}$</tex-math></inline-formula>\n down to 3 nm, giving a lower insertion loss and larger optical modulation amplitude (OMA) when benchmarked with a conventional depletion type RRM with a low \n<inline-formula><tex-math>$V_{\\pi }L$</tex-math></inline-formula>\n of 2.6–4.0 V\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\n mm under a bias voltage \n<inline-formula><tex-math>$V_{\\text{b}}$</tex-math></inline-formula>\n 0–3 V. High-speed operation of the MOSCAP RRM with radius 15 μm demonstrated an average power insertion loss (IL\n<inline-formula><tex-math>$_{\\text{ave}}$</tex-math></inline-formula>\n) of 3.5dB and one level insertion loss (IL\n<inline-formula><tex-math>$_{\\text{one}}$</tex-math></inline-formula>\n) of 2dB for achieving a 3dB dynamic ER at a data rate of 30 Gb/s and bit-error-rate (BER) \n<inline-formula><tex-math>$&lt;\\! 1 \\times 10^{-12}$</tex-math></inline-formula>\n. The same performance is possible at 50 Gb/s when feed-forward-equalization is enabled on the detection side. We also show the possibility of operating at 224 Gb/s using 4-level pulse amplitude modulation (PAM-4) for a MOSCAP RRM incorporating two active segments. The MOSCAP RRM provides an attractive solution to surpass the performance of the conventional depletion-type RRM, for which future performance scaling is limited with increased doping density towards \n<inline-formula><tex-math>$1 \\times 10^{19}$</tex-math></inline-formula>\n cm\n<inline-formula><tex-math>$^{-3}$</tex-math></inline-formula>\n.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10628986","citationCount":"0","resultStr":"{\"title\":\"Advancing All Silicon MOSCAP Ring Modulators With Ultra-Thin Sub-5 nm Insulator\",\"authors\":\"Tzu-Yun Chang;Martin Ebert;Ke Li;Junbo Zhu;Xingzhao Yan;Han Du;Mehdi Banakar;Dehn T. Tran;Callum G. Littlejohns;Adam Scofield;Guomin Yu;Roshanak Shafiiha;Aaron Zilkie;Graham T. Reed;David J. Thomson;Weiwei Zhang\",\"doi\":\"10.1109/JLT.2024.3440040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate silicon/SiO\\n<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\\n/polysilicon lateral MOS-Capacitor (MOSCAP) RRM operating above 50 GHz with modulation amplitude enhanced by a large plasma absorption within the MOS junction. A MOSCAP ring resonator modulator (RRM) model has been built using Lumerical software, in which the plasma effect is defined by adopting a reported superlinear rather than linear plasma absorption equation, which aligns well with our experimental results. The performance of the MOSCAP RRMs has been analyzed with different thicknesses of insulator oxide (\\n<inline-formula><tex-math>$t_{\\\\text{ox}}$</tex-math></inline-formula>\\n). The modulation performance is enhanced with thinner \\n<inline-formula><tex-math>$t_{\\\\text{ox}}$</tex-math></inline-formula>\\n down to 3 nm, giving a lower insertion loss and larger optical modulation amplitude (OMA) when benchmarked with a conventional depletion type RRM with a low \\n<inline-formula><tex-math>$V_{\\\\pi }L$</tex-math></inline-formula>\\n of 2.6–4.0 V\\n<inline-formula><tex-math>$\\\\cdot$</tex-math></inline-formula>\\n mm under a bias voltage \\n<inline-formula><tex-math>$V_{\\\\text{b}}$</tex-math></inline-formula>\\n 0–3 V. High-speed operation of the MOSCAP RRM with radius 15 μm demonstrated an average power insertion loss (IL\\n<inline-formula><tex-math>$_{\\\\text{ave}}$</tex-math></inline-formula>\\n) of 3.5dB and one level insertion loss (IL\\n<inline-formula><tex-math>$_{\\\\text{one}}$</tex-math></inline-formula>\\n) of 2dB for achieving a 3dB dynamic ER at a data rate of 30 Gb/s and bit-error-rate (BER) \\n<inline-formula><tex-math>$&lt;\\\\! 1 \\\\times 10^{-12}$</tex-math></inline-formula>\\n. The same performance is possible at 50 Gb/s when feed-forward-equalization is enabled on the detection side. We also show the possibility of operating at 224 Gb/s using 4-level pulse amplitude modulation (PAM-4) for a MOSCAP RRM incorporating two active segments. The MOSCAP RRM provides an attractive solution to surpass the performance of the conventional depletion-type RRM, for which future performance scaling is limited with increased doping density towards \\n<inline-formula><tex-math>$1 \\\\times 10^{19}$</tex-math></inline-formula>\\n cm\\n<inline-formula><tex-math>$^{-3}$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":16144,\"journal\":{\"name\":\"Journal of Lightwave Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10628986\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lightwave Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10628986/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10628986/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了硅/SiO$_{2}$/多晶硅横向 MOS 电容器 (MOSCAP) RRM,其工作频率超过 50 GHz,调制幅度因 MOS 结内的大量等离子体吸收而增强。我们使用 Lumerical 软件建立了 MOSCAP 环谐振器调制器(RRM)模型,其中等离子体效应是通过采用报告的超线性而非线性等离子体吸收方程来定义的,这与我们的实验结果非常吻合。我们分析了不同厚度绝缘体氧化物($t_{\text{ox}}$)下 MOSCAP RRM 的性能。在偏置电压为 $V_{\text{b}}$ 0-3 V、低 $V_{\pi }L$ 为 2.6-4.0 V$\cdot$ mm 的情况下,与传统耗尽型 RRM 相比,调制性能随着 $t_{\text{ox}}$ 厚度降低到 3 nm 而得到增强,从而实现了更低的插入损耗和更大的光调制幅度 (OMA)。半径为 15 μm 的 MOSCAP RRM 的高速运行表明,平均功率插入损耗(IL$_{\text{ave}}$)为 3.5dB,单级插入损耗(IL$_{\text{one}}$)为 2dB,在数据速率为 30 Gb/s 和误码率(BER)为 $<\!1 times 10^{-12}$。如果在检测端启用前馈均衡,在 50 Gb/s 时也能达到同样的性能。我们还展示了使用 4 级脉冲幅度调制(PAM-4)的 MOSCAP RRM(包含两个有源段)以 224 Gb/s 的速度运行的可能性。MOSCAP RRM 为超越传统耗尽型 RRM 的性能提供了一个极具吸引力的解决方案,对于传统耗尽型 RRM 而言,随着掺杂密度增加到 1 美元/次 10^{19}$ cm$^{-3}$,其未来的性能扩展将受到限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing All Silicon MOSCAP Ring Modulators With Ultra-Thin Sub-5 nm Insulator
We demonstrate silicon/SiO $_{2}$ /polysilicon lateral MOS-Capacitor (MOSCAP) RRM operating above 50 GHz with modulation amplitude enhanced by a large plasma absorption within the MOS junction. A MOSCAP ring resonator modulator (RRM) model has been built using Lumerical software, in which the plasma effect is defined by adopting a reported superlinear rather than linear plasma absorption equation, which aligns well with our experimental results. The performance of the MOSCAP RRMs has been analyzed with different thicknesses of insulator oxide ( $t_{\text{ox}}$ ). The modulation performance is enhanced with thinner $t_{\text{ox}}$ down to 3 nm, giving a lower insertion loss and larger optical modulation amplitude (OMA) when benchmarked with a conventional depletion type RRM with a low $V_{\pi }L$ of 2.6–4.0 V $\cdot$ mm under a bias voltage $V_{\text{b}}$ 0–3 V. High-speed operation of the MOSCAP RRM with radius 15 μm demonstrated an average power insertion loss (IL $_{\text{ave}}$ ) of 3.5dB and one level insertion loss (IL $_{\text{one}}$ ) of 2dB for achieving a 3dB dynamic ER at a data rate of 30 Gb/s and bit-error-rate (BER) $<\! 1 \times 10^{-12}$ . The same performance is possible at 50 Gb/s when feed-forward-equalization is enabled on the detection side. We also show the possibility of operating at 224 Gb/s using 4-level pulse amplitude modulation (PAM-4) for a MOSCAP RRM incorporating two active segments. The MOSCAP RRM provides an attractive solution to surpass the performance of the conventional depletion-type RRM, for which future performance scaling is limited with increased doping density towards $1 \times 10^{19}$ cm $^{-3}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Lightwave Technology
Journal of Lightwave Technology 工程技术-工程:电子与电气
CiteScore
9.40
自引率
14.90%
发文量
936
审稿时长
3.9 months
期刊介绍: The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.
期刊最新文献
Table of Contents Guest Editorial Guest Editorial for the Special Issue on Microwave Photonics Front Cover Front Cover Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1