{"title":"非平衡稳态自由能估算的变分时间反演","authors":"Jorge L. Rosa-Raíces, David T. Limmer","doi":"10.1103/physreve.110.024120","DOIUrl":null,"url":null,"abstract":"Studying the structure of systems in nonequilibrium steady states necessitates tools that quantify population shifts and associated deformations of equilibrium free-energy landscapes under persistent currents. Within the framework of stochastic thermodynamics, we establish a variant of the Kawasaki–Crooks equality that relates nonequilibrium free-energy corrections in overdamped Langevin systems to heat dissipation statistics along time-reversed relaxation trajectories computable with molecular simulation. Using stochastic control theory, we arrive at a general variational approach to evaluate the Kawasaki–Crooks equality and use it to estimate distribution functions of order parameters in specific models of driven and active matter, attaining substantial improvement in accuracy over simple perturbative methods.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational time reversal for free-energy estimation in nonequilibrium steady states\",\"authors\":\"Jorge L. Rosa-Raíces, David T. Limmer\",\"doi\":\"10.1103/physreve.110.024120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the structure of systems in nonequilibrium steady states necessitates tools that quantify population shifts and associated deformations of equilibrium free-energy landscapes under persistent currents. Within the framework of stochastic thermodynamics, we establish a variant of the Kawasaki–Crooks equality that relates nonequilibrium free-energy corrections in overdamped Langevin systems to heat dissipation statistics along time-reversed relaxation trajectories computable with molecular simulation. Using stochastic control theory, we arrive at a general variational approach to evaluate the Kawasaki–Crooks equality and use it to estimate distribution functions of order parameters in specific models of driven and active matter, attaining substantial improvement in accuracy over simple perturbative methods.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.024120\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024120","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Variational time reversal for free-energy estimation in nonequilibrium steady states
Studying the structure of systems in nonequilibrium steady states necessitates tools that quantify population shifts and associated deformations of equilibrium free-energy landscapes under persistent currents. Within the framework of stochastic thermodynamics, we establish a variant of the Kawasaki–Crooks equality that relates nonequilibrium free-energy corrections in overdamped Langevin systems to heat dissipation statistics along time-reversed relaxation trajectories computable with molecular simulation. Using stochastic control theory, we arrive at a general variational approach to evaluate the Kawasaki–Crooks equality and use it to estimate distribution functions of order parameters in specific models of driven and active matter, attaining substantial improvement in accuracy over simple perturbative methods.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.