{"title":"预测女性肝转移 T1-2N0-1 乳腺癌患者生存率的提名图和风险分层系统:一项基于人群的研究","authors":"Kaiyue Wang, Lu Shen, Yiding Chen, Zhe Tang","doi":"10.1186/s12938-024-01274-4","DOIUrl":null,"url":null,"abstract":"Liver was one of the most common distant metastatic sites in breast cancer. Patients with distant metastasis were identified as American Joint Committee on Cancer (AJCC) stage IV indicating poor prognosis. However, few studies have predicted the survival in females with T1-2N0-1 breast cancer who developed liver metastasis. This study aimed to explore the clinical features of these patients and establish a nomogram to predict their overall survival. 1923 patients were randomly divided into training (n = 1154) and validation (n = 769) cohorts. Univariate and multivariate analysis showed that age, marital status, race, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), chemotherapy, surgery and bone metastasis, brain metastasis were considered the independent prognostic indicators. We developed a nomogram according to these ten parameters. The consistency index (c-index) was 0.72 (95% confidence interval CI 0.70–0.74) in the training cohort, 0.72 (95% CI 0.69–0.74) in the validation cohort. Calibration plots indicated that the nomogram-predicted survival was consistent with the recorded 1-, 3- and 5-year prognoses. Decision curve analysis curves in both the training and validation cohorts demonstrated that the nomogram showed better prediction than the AJCC TNM (8th) staging system. Kaplan Meier curve based on the risk stratification system showed that the low-risk group had a better prognosis than the high-risk group (P < 0.001). A predictive nomogram and risk stratification system were constructed to assess prognosis in T1-2N0-1 breast cancer patients with liver metastasis in females. The risk model established in this study had good predictive performance and could provide personalized clinical decision-making for future clinical work.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"52 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nomogram and risk stratification system for predicting survival in T1-2N0-1 breast cancer patients with liver metastasis in females: a population-based study\",\"authors\":\"Kaiyue Wang, Lu Shen, Yiding Chen, Zhe Tang\",\"doi\":\"10.1186/s12938-024-01274-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liver was one of the most common distant metastatic sites in breast cancer. Patients with distant metastasis were identified as American Joint Committee on Cancer (AJCC) stage IV indicating poor prognosis. However, few studies have predicted the survival in females with T1-2N0-1 breast cancer who developed liver metastasis. This study aimed to explore the clinical features of these patients and establish a nomogram to predict their overall survival. 1923 patients were randomly divided into training (n = 1154) and validation (n = 769) cohorts. Univariate and multivariate analysis showed that age, marital status, race, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), chemotherapy, surgery and bone metastasis, brain metastasis were considered the independent prognostic indicators. We developed a nomogram according to these ten parameters. The consistency index (c-index) was 0.72 (95% confidence interval CI 0.70–0.74) in the training cohort, 0.72 (95% CI 0.69–0.74) in the validation cohort. Calibration plots indicated that the nomogram-predicted survival was consistent with the recorded 1-, 3- and 5-year prognoses. Decision curve analysis curves in both the training and validation cohorts demonstrated that the nomogram showed better prediction than the AJCC TNM (8th) staging system. Kaplan Meier curve based on the risk stratification system showed that the low-risk group had a better prognosis than the high-risk group (P < 0.001). A predictive nomogram and risk stratification system were constructed to assess prognosis in T1-2N0-1 breast cancer patients with liver metastasis in females. The risk model established in this study had good predictive performance and could provide personalized clinical decision-making for future clinical work.\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01274-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01274-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A nomogram and risk stratification system for predicting survival in T1-2N0-1 breast cancer patients with liver metastasis in females: a population-based study
Liver was one of the most common distant metastatic sites in breast cancer. Patients with distant metastasis were identified as American Joint Committee on Cancer (AJCC) stage IV indicating poor prognosis. However, few studies have predicted the survival in females with T1-2N0-1 breast cancer who developed liver metastasis. This study aimed to explore the clinical features of these patients and establish a nomogram to predict their overall survival. 1923 patients were randomly divided into training (n = 1154) and validation (n = 769) cohorts. Univariate and multivariate analysis showed that age, marital status, race, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), chemotherapy, surgery and bone metastasis, brain metastasis were considered the independent prognostic indicators. We developed a nomogram according to these ten parameters. The consistency index (c-index) was 0.72 (95% confidence interval CI 0.70–0.74) in the training cohort, 0.72 (95% CI 0.69–0.74) in the validation cohort. Calibration plots indicated that the nomogram-predicted survival was consistent with the recorded 1-, 3- and 5-year prognoses. Decision curve analysis curves in both the training and validation cohorts demonstrated that the nomogram showed better prediction than the AJCC TNM (8th) staging system. Kaplan Meier curve based on the risk stratification system showed that the low-risk group had a better prognosis than the high-risk group (P < 0.001). A predictive nomogram and risk stratification system were constructed to assess prognosis in T1-2N0-1 breast cancer patients with liver metastasis in females. The risk model established in this study had good predictive performance and could provide personalized clinical decision-making for future clinical work.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering