{"title":"根据局部和全局结构识别复杂网络中具有影响力的传播者","authors":"Li Liang, Zhonghui Tang, Shicai Gong","doi":"10.1016/j.jocs.2024.102395","DOIUrl":null,"url":null,"abstract":"<div><p>Complex systems intricately intertwine with life, and the identification of the most influential spreaders in complex networks can aid in resolving numerous pragmatic problems. Nevertheless, the identification of such kinds of nodes currently stands as an open and challenging issue. In order to accurately and efficiently address this issue, numerous metrics have been proposed. In this paper, we propose a new method based on degree, clustering coefficient and k-shell decomposition value—<span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span> to detect the most influential spreaders by gauging the spreading ability of nodes. The proposed centrality assesses the significance of a node by the impacts of its neighbors, encompassing both the local and global network structures. To evaluate the performance of <span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span>, we compare it with different centrality measures under utilizing the Susceptible–Infected–Recovered model to simulate the propagation of epidemics across real-world networks. Experiments on real networks illustrate that <span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span> exhibits superior differentiation ability and more accurate identification ability for influential spreaders and compared with other methods, Kendall’s <span><math><mi>τ</mi></math></span> correlation coefficient of the <span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span> could be enhanced by 12.82%, 13.20%, 8.62%, 5.32%, 7.97% and 11.73% for the degree centrality, K-shell decomposition, <span><math><mrow><mi>G</mi><mi>L</mi><mi>I</mi></mrow></math></span> centrality, <span><math><mi>H</mi></math></span>-<span><math><mrow><mi>G</mi><mi>S</mi><mi>M</mi></mrow></math></span> centrality, <span><math><mrow><mi>L</mi><mi>G</mi><mi>I</mi></mrow></math></span> centrality and <span><math><mrow><mi>N</mi><mi>P</mi><mi>C</mi><mi>C</mi></mrow></math></span> centrality.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"82 ","pages":"Article 102395"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying influential spreaders in complex networks based on local and global structure\",\"authors\":\"Li Liang, Zhonghui Tang, Shicai Gong\",\"doi\":\"10.1016/j.jocs.2024.102395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Complex systems intricately intertwine with life, and the identification of the most influential spreaders in complex networks can aid in resolving numerous pragmatic problems. Nevertheless, the identification of such kinds of nodes currently stands as an open and challenging issue. In order to accurately and efficiently address this issue, numerous metrics have been proposed. In this paper, we propose a new method based on degree, clustering coefficient and k-shell decomposition value—<span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span> to detect the most influential spreaders by gauging the spreading ability of nodes. The proposed centrality assesses the significance of a node by the impacts of its neighbors, encompassing both the local and global network structures. To evaluate the performance of <span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span>, we compare it with different centrality measures under utilizing the Susceptible–Infected–Recovered model to simulate the propagation of epidemics across real-world networks. Experiments on real networks illustrate that <span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span> exhibits superior differentiation ability and more accurate identification ability for influential spreaders and compared with other methods, Kendall’s <span><math><mi>τ</mi></math></span> correlation coefficient of the <span><math><mrow><mi>D</mi><mi>C</mi><mi>K</mi></mrow></math></span> could be enhanced by 12.82%, 13.20%, 8.62%, 5.32%, 7.97% and 11.73% for the degree centrality, K-shell decomposition, <span><math><mrow><mi>G</mi><mi>L</mi><mi>I</mi></mrow></math></span> centrality, <span><math><mi>H</mi></math></span>-<span><math><mrow><mi>G</mi><mi>S</mi><mi>M</mi></mrow></math></span> centrality, <span><math><mrow><mi>L</mi><mi>G</mi><mi>I</mi></mrow></math></span> centrality and <span><math><mrow><mi>N</mi><mi>P</mi><mi>C</mi><mi>C</mi></mrow></math></span> centrality.</p></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"82 \",\"pages\":\"Article 102395\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750324001881\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001881","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Identifying influential spreaders in complex networks based on local and global structure
Complex systems intricately intertwine with life, and the identification of the most influential spreaders in complex networks can aid in resolving numerous pragmatic problems. Nevertheless, the identification of such kinds of nodes currently stands as an open and challenging issue. In order to accurately and efficiently address this issue, numerous metrics have been proposed. In this paper, we propose a new method based on degree, clustering coefficient and k-shell decomposition value— to detect the most influential spreaders by gauging the spreading ability of nodes. The proposed centrality assesses the significance of a node by the impacts of its neighbors, encompassing both the local and global network structures. To evaluate the performance of , we compare it with different centrality measures under utilizing the Susceptible–Infected–Recovered model to simulate the propagation of epidemics across real-world networks. Experiments on real networks illustrate that exhibits superior differentiation ability and more accurate identification ability for influential spreaders and compared with other methods, Kendall’s correlation coefficient of the could be enhanced by 12.82%, 13.20%, 8.62%, 5.32%, 7.97% and 11.73% for the degree centrality, K-shell decomposition, centrality, - centrality, centrality and centrality.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).