使用 Ge4Sb6Te7 相变记忆突触的低能量尖峰神经网络

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-08-06 DOI:10.1109/LED.2024.3439532
Shafin Bin Hamid;Asir Intisar Khan;Huairuo Zhang;Albert V. Davydov;Eric Pop
{"title":"使用 Ge4Sb6Te7 相变记忆突触的低能量尖峰神经网络","authors":"Shafin Bin Hamid;Asir Intisar Khan;Huairuo Zhang;Albert V. Davydov;Eric Pop","doi":"10.1109/LED.2024.3439532","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) with phase change memory (PCM) devices are promising for in-memory computing, but their performance is often constrained by the abrupt depression (conductance decrease) of PCM synapses. Here, we report an energy-efficient SNN using Ge\n<sub>4</sub>\nSb\n<sub>6</sub>\nTe\n<sub>7</sub>\n (GST467) as the phase-change material in a \n<italic>single</i>\n device per synapse with \n<italic>identical</i>\n pulses, and find \n<inline-formula> <tex-math>$\\sim 2.5\\times $ </tex-math></inline-formula>\n reduction of inference energy in such SNNs compared to SNNs using two conventional PCMs per synapse. We leverage the unique gradual potentiation and depression characteristics of Ge\n<sub>4</sub>\nSb\n<sub>6</sub>\nTe\n<sub>7</sub>\n in a behavioral model and train a two-layer SNN to demonstrate both pattern and online learning. We also uncover the trade-offs between energy consumption and SNN recognition rate considering resistance drift and conductance ranges of the synapses, providing a design guideline for future energy-efficient PCM-based SNN.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Energy Spiking Neural Network Using Ge4Sb6Te7 Phase Change Memory Synapses\",\"authors\":\"Shafin Bin Hamid;Asir Intisar Khan;Huairuo Zhang;Albert V. Davydov;Eric Pop\",\"doi\":\"10.1109/LED.2024.3439532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) with phase change memory (PCM) devices are promising for in-memory computing, but their performance is often constrained by the abrupt depression (conductance decrease) of PCM synapses. Here, we report an energy-efficient SNN using Ge\\n<sub>4</sub>\\nSb\\n<sub>6</sub>\\nTe\\n<sub>7</sub>\\n (GST467) as the phase-change material in a \\n<italic>single</i>\\n device per synapse with \\n<italic>identical</i>\\n pulses, and find \\n<inline-formula> <tex-math>$\\\\sim 2.5\\\\times $ </tex-math></inline-formula>\\n reduction of inference energy in such SNNs compared to SNNs using two conventional PCMs per synapse. We leverage the unique gradual potentiation and depression characteristics of Ge\\n<sub>4</sub>\\nSb\\n<sub>6</sub>\\nTe\\n<sub>7</sub>\\n in a behavioral model and train a two-layer SNN to demonstrate both pattern and online learning. We also uncover the trade-offs between energy consumption and SNN recognition rate considering resistance drift and conductance ranges of the synapses, providing a design guideline for future energy-efficient PCM-based SNN.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10623734/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10623734/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用相变存储器(PCM)器件的尖峰神经网络(SNN)有望用于内存计算,但其性能往往受到 PCM 突触突然抑制(电导下降)的限制。在这里,我们报告了一种高能效的SNN,它使用Ge4Sb6Te7 (GST467)作为相变材料,在每个突触的单个器件中使用相同的脉冲,并发现与每个突触使用两个传统PCM的SNN相比,这种SNN的推理能量减少了$/sim 2.5/times$。我们在一个行为模型中利用了 Ge4Sb6Te7 独特的渐进电位和抑制特性,并训练了一个双层 SNN 来演示模式和在线学习。考虑到突触的电阻漂移和电导范围,我们还揭示了能耗和 SNN 识别率之间的权衡,为未来基于高能效 PCM 的 SNN 提供了设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Energy Spiking Neural Network Using Ge4Sb6Te7 Phase Change Memory Synapses
Spiking neural networks (SNNs) with phase change memory (PCM) devices are promising for in-memory computing, but their performance is often constrained by the abrupt depression (conductance decrease) of PCM synapses. Here, we report an energy-efficient SNN using Ge 4 Sb 6 Te 7 (GST467) as the phase-change material in a single device per synapse with identical pulses, and find $\sim 2.5\times $ reduction of inference energy in such SNNs compared to SNNs using two conventional PCMs per synapse. We leverage the unique gradual potentiation and depression characteristics of Ge 4 Sb 6 Te 7 in a behavioral model and train a two-layer SNN to demonstrate both pattern and online learning. We also uncover the trade-offs between energy consumption and SNN recognition rate considering resistance drift and conductance ranges of the synapses, providing a design guideline for future energy-efficient PCM-based SNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1