探测量子阱中的电子密度及其对红外光检测器性能的影响

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-08-07 DOI:10.1109/LED.2024.3439548
Rui Xin;Ning Li;Hui Xia;Xinyang Jiang;Li Yu;Weiwei Liu;Tianxin Li
{"title":"探测量子阱中的电子密度及其对红外光检测器性能的影响","authors":"Rui Xin;Ning Li;Hui Xia;Xinyang Jiang;Li Yu;Weiwei Liu;Tianxin Li","doi":"10.1109/LED.2024.3439548","DOIUrl":null,"url":null,"abstract":"For quantum well (QW) photodetectors and lasers, doping to obtain desired electron density in QWs is a critical factor to realize the optimal device behavior. In this study, we employed scanning spreading resistance microscopy (SSRM) to resolve the carriers in individual QWs, and investigate the relevance between carrier concentration and the performance of three Quantum Well Infrared Photodetectors (QWIPs) with n-type density designed as \n<inline-formula> <tex-math>${2}.{5} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>${5} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${2} \\times {10} ^{{18}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n respectively. It’s found that the actual dopant densities of silicon in QWs obtained by secondary ions mass spectroscopy (SIMS) can be considerably deviate from the nominal values. Meanwhile the electron concentrations in QWs estimated from the SSRM measurement are \n<inline-formula> <tex-math>${2}.{4} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>${4}.{7} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${1}.{0} \\times {10} ^{{18}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n respectively, which accounts for the increment of the responsivity and the degradation in dark current among the three QWIPs. The SSRM study dicloses the insuffcient activation of Si dopant in nano-sized GaAs QWs, and in another aspect, it confirms the optimal carrier concentration for realizing ideal signal-to-noise ratio of the QWIPs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Electron Density in Quantum Wells and its Impact on the Performance of Infrared Photodetectors\",\"authors\":\"Rui Xin;Ning Li;Hui Xia;Xinyang Jiang;Li Yu;Weiwei Liu;Tianxin Li\",\"doi\":\"10.1109/LED.2024.3439548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For quantum well (QW) photodetectors and lasers, doping to obtain desired electron density in QWs is a critical factor to realize the optimal device behavior. In this study, we employed scanning spreading resistance microscopy (SSRM) to resolve the carriers in individual QWs, and investigate the relevance between carrier concentration and the performance of three Quantum Well Infrared Photodetectors (QWIPs) with n-type density designed as \\n<inline-formula> <tex-math>${2}.{5} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>${5} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${2} \\\\times {10} ^{{18}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n respectively. It’s found that the actual dopant densities of silicon in QWs obtained by secondary ions mass spectroscopy (SIMS) can be considerably deviate from the nominal values. Meanwhile the electron concentrations in QWs estimated from the SSRM measurement are \\n<inline-formula> <tex-math>${2}.{4} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>${4}.{7} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${1}.{0} \\\\times {10} ^{{18}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n respectively, which accounts for the increment of the responsivity and the degradation in dark current among the three QWIPs. The SSRM study dicloses the insuffcient activation of Si dopant in nano-sized GaAs QWs, and in another aspect, it confirms the optimal carrier concentration for realizing ideal signal-to-noise ratio of the QWIPs.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10630554/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10630554/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于量子阱(QW)光电探测器和激光器来说,在 QW 中掺杂以获得理想的电子密度是实现最佳器件性能的关键因素。在这项研究中,我们采用了扫描展阻显微镜(SSRM)来解析单个量子阱中的载流子,并研究了三种量子阱红外光探测器(QWIPs)的载流子浓度与性能之间的相关性,其 n 型密度设计为 ${2}.{5}.\times {10}^{{17}}$ cm $^{-{3}}$ , ${5}\times {10}^{{17}}$ cm $^{-{3}}$ 和 ${2}\times {10}分别为 ^{{18}}$ cm $^{-{3}}$。研究发现,二次离子质谱法(SIMS)得到的 QWs 中硅的实际掺杂密度可能与标称值有很大偏差。同时,通过 SSRM 测量估算出的 QW 中的电子浓度是标称值的{2}.{4}倍。\乘以 {10}^{{17}}$ cm $^{-{3}}$ , ${4}.{7}\乘以 {10}^{{17}}$ cm $^{-{3}}$ 和 ${1}.{0}\times {10}^{{18}}$ cm $^{-{3}}$,这解释了三种 QWIP 之间响应率的提高和暗电流的下降。SSRM 研究揭示了硅掺杂剂在纳米尺寸砷化镓 QW 中活化不足的问题,并从另一方面证实了实现 QWIP 理想信噪比的最佳载流子浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing Electron Density in Quantum Wells and its Impact on the Performance of Infrared Photodetectors
For quantum well (QW) photodetectors and lasers, doping to obtain desired electron density in QWs is a critical factor to realize the optimal device behavior. In this study, we employed scanning spreading resistance microscopy (SSRM) to resolve the carriers in individual QWs, and investigate the relevance between carrier concentration and the performance of three Quantum Well Infrared Photodetectors (QWIPs) with n-type density designed as ${2}.{5} \times {10} ^{{17}}$ cm $^{-{3}}$ , ${5} \times {10} ^{{17}}$ cm $^{-{3}}$ and ${2} \times {10} ^{{18}}$ cm $^{-{3}}$ respectively. It’s found that the actual dopant densities of silicon in QWs obtained by secondary ions mass spectroscopy (SIMS) can be considerably deviate from the nominal values. Meanwhile the electron concentrations in QWs estimated from the SSRM measurement are ${2}.{4} \times {10} ^{{17}}$ cm $^{-{3}}$ , ${4}.{7} \times {10} ^{{17}}$ cm $^{-{3}}$ and ${1}.{0} \times {10} ^{{18}}$ cm $^{-{3}}$ respectively, which accounts for the increment of the responsivity and the degradation in dark current among the three QWIPs. The SSRM study dicloses the insuffcient activation of Si dopant in nano-sized GaAs QWs, and in another aspect, it confirms the optimal carrier concentration for realizing ideal signal-to-noise ratio of the QWIPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1