Rui Xin;Ning Li;Hui Xia;Xinyang Jiang;Li Yu;Weiwei Liu;Tianxin Li
{"title":"探测量子阱中的电子密度及其对红外光检测器性能的影响","authors":"Rui Xin;Ning Li;Hui Xia;Xinyang Jiang;Li Yu;Weiwei Liu;Tianxin Li","doi":"10.1109/LED.2024.3439548","DOIUrl":null,"url":null,"abstract":"For quantum well (QW) photodetectors and lasers, doping to obtain desired electron density in QWs is a critical factor to realize the optimal device behavior. In this study, we employed scanning spreading resistance microscopy (SSRM) to resolve the carriers in individual QWs, and investigate the relevance between carrier concentration and the performance of three Quantum Well Infrared Photodetectors (QWIPs) with n-type density designed as \n<inline-formula> <tex-math>${2}.{5} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>${5} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${2} \\times {10} ^{{18}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n respectively. It’s found that the actual dopant densities of silicon in QWs obtained by secondary ions mass spectroscopy (SIMS) can be considerably deviate from the nominal values. Meanwhile the electron concentrations in QWs estimated from the SSRM measurement are \n<inline-formula> <tex-math>${2}.{4} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>${4}.{7} \\times {10} ^{{17}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${1}.{0} \\times {10} ^{{18}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\n respectively, which accounts for the increment of the responsivity and the degradation in dark current among the three QWIPs. The SSRM study dicloses the insuffcient activation of Si dopant in nano-sized GaAs QWs, and in another aspect, it confirms the optimal carrier concentration for realizing ideal signal-to-noise ratio of the QWIPs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Electron Density in Quantum Wells and its Impact on the Performance of Infrared Photodetectors\",\"authors\":\"Rui Xin;Ning Li;Hui Xia;Xinyang Jiang;Li Yu;Weiwei Liu;Tianxin Li\",\"doi\":\"10.1109/LED.2024.3439548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For quantum well (QW) photodetectors and lasers, doping to obtain desired electron density in QWs is a critical factor to realize the optimal device behavior. In this study, we employed scanning spreading resistance microscopy (SSRM) to resolve the carriers in individual QWs, and investigate the relevance between carrier concentration and the performance of three Quantum Well Infrared Photodetectors (QWIPs) with n-type density designed as \\n<inline-formula> <tex-math>${2}.{5} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>${5} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${2} \\\\times {10} ^{{18}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n respectively. It’s found that the actual dopant densities of silicon in QWs obtained by secondary ions mass spectroscopy (SIMS) can be considerably deviate from the nominal values. Meanwhile the electron concentrations in QWs estimated from the SSRM measurement are \\n<inline-formula> <tex-math>${2}.{4} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>${4}.{7} \\\\times {10} ^{{17}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${1}.{0} \\\\times {10} ^{{18}}$ </tex-math></inline-formula>\\n cm\\n<inline-formula> <tex-math>$^{-{3}}$ </tex-math></inline-formula>\\n respectively, which accounts for the increment of the responsivity and the degradation in dark current among the three QWIPs. The SSRM study dicloses the insuffcient activation of Si dopant in nano-sized GaAs QWs, and in another aspect, it confirms the optimal carrier concentration for realizing ideal signal-to-noise ratio of the QWIPs.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10630554/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10630554/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
对于量子阱(QW)光电探测器和激光器来说,在 QW 中掺杂以获得理想的电子密度是实现最佳器件性能的关键因素。在这项研究中,我们采用了扫描展阻显微镜(SSRM)来解析单个量子阱中的载流子,并研究了三种量子阱红外光探测器(QWIPs)的载流子浓度与性能之间的相关性,其 n 型密度设计为 ${2}.{5}.\times {10}^{{17}}$ cm $^{-{3}}$ , ${5}\times {10}^{{17}}$ cm $^{-{3}}$ 和 ${2}\times {10}分别为 ^{{18}}$ cm $^{-{3}}$。研究发现,二次离子质谱法(SIMS)得到的 QWs 中硅的实际掺杂密度可能与标称值有很大偏差。同时,通过 SSRM 测量估算出的 QW 中的电子浓度是标称值的{2}.{4}倍。\乘以 {10}^{{17}}$ cm $^{-{3}}$ , ${4}.{7}\乘以 {10}^{{17}}$ cm $^{-{3}}$ 和 ${1}.{0}\times {10}^{{18}}$ cm $^{-{3}}$,这解释了三种 QWIP 之间响应率的提高和暗电流的下降。SSRM 研究揭示了硅掺杂剂在纳米尺寸砷化镓 QW 中活化不足的问题,并从另一方面证实了实现 QWIP 理想信噪比的最佳载流子浓度。
Probing Electron Density in Quantum Wells and its Impact on the Performance of Infrared Photodetectors
For quantum well (QW) photodetectors and lasers, doping to obtain desired electron density in QWs is a critical factor to realize the optimal device behavior. In this study, we employed scanning spreading resistance microscopy (SSRM) to resolve the carriers in individual QWs, and investigate the relevance between carrier concentration and the performance of three Quantum Well Infrared Photodetectors (QWIPs) with n-type density designed as
${2}.{5} \times {10} ^{{17}}$
cm
$^{-{3}}$
,
${5} \times {10} ^{{17}}$
cm
$^{-{3}}$
and
${2} \times {10} ^{{18}}$
cm
$^{-{3}}$
respectively. It’s found that the actual dopant densities of silicon in QWs obtained by secondary ions mass spectroscopy (SIMS) can be considerably deviate from the nominal values. Meanwhile the electron concentrations in QWs estimated from the SSRM measurement are
${2}.{4} \times {10} ^{{17}}$
cm
$^{-{3}}$
,
${4}.{7} \times {10} ^{{17}}$
cm
$^{-{3}}$
and
${1}.{0} \times {10} ^{{18}}$
cm
$^{-{3}}$
respectively, which accounts for the increment of the responsivity and the degradation in dark current among the three QWIPs. The SSRM study dicloses the insuffcient activation of Si dopant in nano-sized GaAs QWs, and in another aspect, it confirms the optimal carrier concentration for realizing ideal signal-to-noise ratio of the QWIPs.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.