{"title":"探索用于可持续包装的可生物降解聚合物复合材料:性能、制造技术和环境影响综述","authors":"Maziyar Sabet","doi":"10.1007/s13726-024-01365-y","DOIUrl":null,"url":null,"abstract":"<p>Biodegradable polymer composites (BPCs) emerge as a promising solution to the escalating plastics pollution crisis. This review comprehensively analyzes their multifaceted properties, including mechanical strength, gas barrier function, and biodegradation rates, emphasizing their potential for tailored applications in food, beverage, and pharmaceutical packaging. By delving into the optimization of BPC characteristics, we illustrate how these materials can enhance product integrity and extend shelf life, crucial for maintaining the quality and safety of packaged goods. Scalable and cost-effective manufacturing techniques are critically examined, aiming to bridge the gap toward commercial viability and widespread adoption of BPCs. Beyond biodegradability, the adherence to stringent environmental standards is emphasized, promoting a circular economy within packaging through material recovery and reintegration processes. Life cycle assessment (LCA) studies are incorporated to provide a holistic environmental perspective, evaluating the overall impact of BPCs from production to disposal. Industry perspectives are integrated to assess the economic feasibility of BPC adoption across diverse sectors, analyzing potential cost benefits and challenges in integrating BPCs into existing production lines. Finally, the evolving regulatory landscape surrounding BPCs is addressed, highlighting both challenges and opportunities for their widespread adoption. This comprehensive analysis serves as a valuable resource for industry and academia, advocating for BPCs as a crucial step toward a sustainable future for packaging, combining environmental responsibility with practical application.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"82 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring biodegradable polymer composites for sustainable packaging: a review on properties, manufacturing techniques, and environmental impacts\",\"authors\":\"Maziyar Sabet\",\"doi\":\"10.1007/s13726-024-01365-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biodegradable polymer composites (BPCs) emerge as a promising solution to the escalating plastics pollution crisis. This review comprehensively analyzes their multifaceted properties, including mechanical strength, gas barrier function, and biodegradation rates, emphasizing their potential for tailored applications in food, beverage, and pharmaceutical packaging. By delving into the optimization of BPC characteristics, we illustrate how these materials can enhance product integrity and extend shelf life, crucial for maintaining the quality and safety of packaged goods. Scalable and cost-effective manufacturing techniques are critically examined, aiming to bridge the gap toward commercial viability and widespread adoption of BPCs. Beyond biodegradability, the adherence to stringent environmental standards is emphasized, promoting a circular economy within packaging through material recovery and reintegration processes. Life cycle assessment (LCA) studies are incorporated to provide a holistic environmental perspective, evaluating the overall impact of BPCs from production to disposal. Industry perspectives are integrated to assess the economic feasibility of BPC adoption across diverse sectors, analyzing potential cost benefits and challenges in integrating BPCs into existing production lines. Finally, the evolving regulatory landscape surrounding BPCs is addressed, highlighting both challenges and opportunities for their widespread adoption. This comprehensive analysis serves as a valuable resource for industry and academia, advocating for BPCs as a crucial step toward a sustainable future for packaging, combining environmental responsibility with practical application.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":601,\"journal\":{\"name\":\"Iranian Polymer Journal\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s13726-024-01365-y\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01365-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Exploring biodegradable polymer composites for sustainable packaging: a review on properties, manufacturing techniques, and environmental impacts
Biodegradable polymer composites (BPCs) emerge as a promising solution to the escalating plastics pollution crisis. This review comprehensively analyzes their multifaceted properties, including mechanical strength, gas barrier function, and biodegradation rates, emphasizing their potential for tailored applications in food, beverage, and pharmaceutical packaging. By delving into the optimization of BPC characteristics, we illustrate how these materials can enhance product integrity and extend shelf life, crucial for maintaining the quality and safety of packaged goods. Scalable and cost-effective manufacturing techniques are critically examined, aiming to bridge the gap toward commercial viability and widespread adoption of BPCs. Beyond biodegradability, the adherence to stringent environmental standards is emphasized, promoting a circular economy within packaging through material recovery and reintegration processes. Life cycle assessment (LCA) studies are incorporated to provide a holistic environmental perspective, evaluating the overall impact of BPCs from production to disposal. Industry perspectives are integrated to assess the economic feasibility of BPC adoption across diverse sectors, analyzing potential cost benefits and challenges in integrating BPCs into existing production lines. Finally, the evolving regulatory landscape surrounding BPCs is addressed, highlighting both challenges and opportunities for their widespread adoption. This comprehensive analysis serves as a valuable resource for industry and academia, advocating for BPCs as a crucial step toward a sustainable future for packaging, combining environmental responsibility with practical application.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.