改造植物细胞内免疫受体 Sr50 以恢复对 AvrSr50 逃逸突变体的识别

Kyungyong Seong, Wei Wei, Brandon Vega, Amanda Dee, Griselda Ramirez-Bernardino, Rakesh Kumar, Lorena Parra, Ksenia Krasileva
{"title":"改造植物细胞内免疫受体 Sr50 以恢复对 AvrSr50 逃逸突变体的识别","authors":"Kyungyong Seong, Wei Wei, Brandon Vega, Amanda Dee, Griselda Ramirez-Bernardino, Rakesh Kumar, Lorena Parra, Ksenia Krasileva","doi":"10.1101/2024.08.07.607039","DOIUrl":null,"url":null,"abstract":"Sr50, an intracellular nucleotide-binding leucine-rich repeat receptor (NLR), confers resistance of wheat against stem rust caused by the fungal pathogen <em>Puccinia graminis</em> f. sp. <em>tritici</em>. The receptor recognizes the pathogen effector AvrSr50 through its C-terminal leucine-rich repeat domain, initiating a localized cell death immune response. However, this immunity is compromised by mutations in the effector, as in the escape mutant AvrSr50<sup>QCMJC</sup>, which evades Sr50 detection. In this study, we employed iterative computational structural analyses and site-directed mutagenesis for rational engineering of Sr50 to gain recognition of AvrSr50<sup>QCMJC</sup>. Following an initial structural hypothesis driven by molecular docking, we identified the Sr50<sup>K711D</sup> single mutant, which induces an intermediate immune response against AvrSr50<sup>QCMJC</sup> without losing recognition against AvrSr50. Increasing gene expression with a stronger promoter enabled the mutant to elicit a robust response, indicating weak effector recognition can be complemented by enhanced receptor expression. Further structural refinements led to the creation of five double mutants and two triple mutants with dual recognition of AvrSr50 and AvrSr50<sup>QCMJC</sup> with greater immune response intensities than Sr50<sup>K711D</sup> against the escape mutant. All effective mutations against AvrSr50<sup>QCMJC</sup> required the K711D substitution, indicating that multiple solutions exist for gain of recognition, but the path to reach these mutations may be confined. Furthermore, this single substitution alters the prediction of AlphaFold 2, allowing it to model the complex structure of Sr50<sup>K711D</sup> and AvrSr50 that match our final structural hypothesis. Collectively, our study outlines a framework for rational engineering of NLR systems to overcome pathogen escape mutations and provides datasets for future computational models for NLR resurrection.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the plant intracellular immune receptor Sr50 to restore recognition of the AvrSr50 escape mutant\",\"authors\":\"Kyungyong Seong, Wei Wei, Brandon Vega, Amanda Dee, Griselda Ramirez-Bernardino, Rakesh Kumar, Lorena Parra, Ksenia Krasileva\",\"doi\":\"10.1101/2024.08.07.607039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sr50, an intracellular nucleotide-binding leucine-rich repeat receptor (NLR), confers resistance of wheat against stem rust caused by the fungal pathogen <em>Puccinia graminis</em> f. sp. <em>tritici</em>. The receptor recognizes the pathogen effector AvrSr50 through its C-terminal leucine-rich repeat domain, initiating a localized cell death immune response. However, this immunity is compromised by mutations in the effector, as in the escape mutant AvrSr50<sup>QCMJC</sup>, which evades Sr50 detection. In this study, we employed iterative computational structural analyses and site-directed mutagenesis for rational engineering of Sr50 to gain recognition of AvrSr50<sup>QCMJC</sup>. Following an initial structural hypothesis driven by molecular docking, we identified the Sr50<sup>K711D</sup> single mutant, which induces an intermediate immune response against AvrSr50<sup>QCMJC</sup> without losing recognition against AvrSr50. Increasing gene expression with a stronger promoter enabled the mutant to elicit a robust response, indicating weak effector recognition can be complemented by enhanced receptor expression. Further structural refinements led to the creation of five double mutants and two triple mutants with dual recognition of AvrSr50 and AvrSr50<sup>QCMJC</sup> with greater immune response intensities than Sr50<sup>K711D</sup> against the escape mutant. All effective mutations against AvrSr50<sup>QCMJC</sup> required the K711D substitution, indicating that multiple solutions exist for gain of recognition, but the path to reach these mutations may be confined. Furthermore, this single substitution alters the prediction of AlphaFold 2, allowing it to model the complex structure of Sr50<sup>K711D</sup> and AvrSr50 that match our final structural hypothesis. Collectively, our study outlines a framework for rational engineering of NLR systems to overcome pathogen escape mutations and provides datasets for future computational models for NLR resurrection.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.07.607039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Sr50是一种细胞内核苷酸结合富亮氨酸重复受体(NLR),它能使小麦对由真菌病原体Puccinia graminis f. sp. tritici引起的茎锈病产生抗性。该受体通过其 C 端富含亮氨酸的重复结构域识别病原体效应物 AvrSr50,启动局部细胞死亡免疫反应。然而,这种免疫反应会受到效应物突变的影响,如逃避 Sr50 检测的逃逸突变体 AvrSr50QCMJC。在这项研究中,我们采用了迭代计算结构分析和定点诱变技术对 Sr50 进行合理的工程设计,以获得对 AvrSr50QCMJC 的识别。根据分子对接驱动的初步结构假设,我们确定了 Sr50K711D 单突变体,它能诱导针对 AvrSr50QCMJC 的中间免疫反应,而不会失去对 AvrSr50 的识别能力。用更强的启动子增加基因表达使突变体能够引起强有力的反应,这表明弱效应物识别可以通过增强受体表达来补充。通过进一步的结构改进,产生了五个双突变体和两个三突变体,它们对 AvrSr50 和 AvrSr50QCMJC 具有双重识别能力,对逃逸突变体的免疫反应强度比 Sr50K711D 更大。所有针对 AvrSr50QCMJC 的有效突变都需要 K711D 的替代,这表明识别增益存在多种解决方案,但实现这些突变的路径可能是有限的。此外,这一单一的取代改变了 AlphaFold 2 的预测,使其能够模拟 Sr50K711D 和 AvrSr50 的复杂结构,从而与我们的最终结构假设相吻合。总之,我们的研究为克服病原体逃逸突变的 NLR 系统的合理工程设计勾勒出了一个框架,并为未来的 NLR 复活计算模型提供了数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering the plant intracellular immune receptor Sr50 to restore recognition of the AvrSr50 escape mutant
Sr50, an intracellular nucleotide-binding leucine-rich repeat receptor (NLR), confers resistance of wheat against stem rust caused by the fungal pathogen Puccinia graminis f. sp. tritici. The receptor recognizes the pathogen effector AvrSr50 through its C-terminal leucine-rich repeat domain, initiating a localized cell death immune response. However, this immunity is compromised by mutations in the effector, as in the escape mutant AvrSr50QCMJC, which evades Sr50 detection. In this study, we employed iterative computational structural analyses and site-directed mutagenesis for rational engineering of Sr50 to gain recognition of AvrSr50QCMJC. Following an initial structural hypothesis driven by molecular docking, we identified the Sr50K711D single mutant, which induces an intermediate immune response against AvrSr50QCMJC without losing recognition against AvrSr50. Increasing gene expression with a stronger promoter enabled the mutant to elicit a robust response, indicating weak effector recognition can be complemented by enhanced receptor expression. Further structural refinements led to the creation of five double mutants and two triple mutants with dual recognition of AvrSr50 and AvrSr50QCMJC with greater immune response intensities than Sr50K711D against the escape mutant. All effective mutations against AvrSr50QCMJC required the K711D substitution, indicating that multiple solutions exist for gain of recognition, but the path to reach these mutations may be confined. Furthermore, this single substitution alters the prediction of AlphaFold 2, allowing it to model the complex structure of Sr50K711D and AvrSr50 that match our final structural hypothesis. Collectively, our study outlines a framework for rational engineering of NLR systems to overcome pathogen escape mutations and provides datasets for future computational models for NLR resurrection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis Directional Cell-to-cell Transport in Plant Roots Bundle sheath cell-dependent chloroplast movement in mesophyll cells of C4 plants analyzed using live leaf-section imaging Stigma longevity is not a major limiting factor in hybrid wheat seed production Genotype by environment interactions in gene regulation underlie the response to soil drying in the model grass Brachypodium distachyon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1