Yezhang Ding, Hunter K. Vogel, Yi Zhai, Hans K. Carlson, Peter F. Andeer, Vlastimil Novak, Nakian Kim, Benjamin P. Bowen, Amber N. Golini, Suzanne M. Kosina, Devin Coleman-Derr, John P. Vogel, Trent R. Northen
{"title":"洞察多巴胺在根瘤微生物组组合中的作用","authors":"Yezhang Ding, Hunter K. Vogel, Yi Zhai, Hans K. Carlson, Peter F. Andeer, Vlastimil Novak, Nakian Kim, Benjamin P. Bowen, Amber N. Golini, Suzanne M. Kosina, Devin Coleman-Derr, John P. Vogel, Trent R. Northen","doi":"10.1101/2024.08.07.607067","DOIUrl":null,"url":null,"abstract":"Dopamine plays a critical role in animal physiology and interactions with gut microbes. In plants, dopamine is known to function in plant defense and abiotic stress tolerance; however, its role in mediating plant-microbiome interactions remains unexplored. In this study, we observed that dopamine is one of the most abundant exometabolites with natural variation in root exudates across diverse Brachypodium distachyon lines, suggesting a potential role in rhizosphere microbial assembly. To further investigate this, we colonized ten natural B. distachyon lines with a 16-member bacterial synthetic community (SynCom), collected paired metabolomic and 16S rRNA sequencing data, and performed an association analysis. Our results revealed that dopamine levels in root exudates were significantly associated with the abundance of six SynCom members in a hydroponic system. In vitro growth studies demonstrated that dopamine had a significant effect on the growth of the same six bacterial isolates. Additionally, treating soil directly with dopamine enriched Actinobacteria, consistent with both the SynCom-dopamine correlations and the isolate growth results. Collectively, our study underscores the selective influence of dopamine on rhizosphere microbial communities, with implications for precision microbiome management.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the role of dopamine in rhizosphere microbiome assembly\",\"authors\":\"Yezhang Ding, Hunter K. Vogel, Yi Zhai, Hans K. Carlson, Peter F. Andeer, Vlastimil Novak, Nakian Kim, Benjamin P. Bowen, Amber N. Golini, Suzanne M. Kosina, Devin Coleman-Derr, John P. Vogel, Trent R. Northen\",\"doi\":\"10.1101/2024.08.07.607067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dopamine plays a critical role in animal physiology and interactions with gut microbes. In plants, dopamine is known to function in plant defense and abiotic stress tolerance; however, its role in mediating plant-microbiome interactions remains unexplored. In this study, we observed that dopamine is one of the most abundant exometabolites with natural variation in root exudates across diverse Brachypodium distachyon lines, suggesting a potential role in rhizosphere microbial assembly. To further investigate this, we colonized ten natural B. distachyon lines with a 16-member bacterial synthetic community (SynCom), collected paired metabolomic and 16S rRNA sequencing data, and performed an association analysis. Our results revealed that dopamine levels in root exudates were significantly associated with the abundance of six SynCom members in a hydroponic system. In vitro growth studies demonstrated that dopamine had a significant effect on the growth of the same six bacterial isolates. Additionally, treating soil directly with dopamine enriched Actinobacteria, consistent with both the SynCom-dopamine correlations and the isolate growth results. Collectively, our study underscores the selective influence of dopamine on rhizosphere microbial communities, with implications for precision microbiome management.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.07.607067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Insights into the role of dopamine in rhizosphere microbiome assembly
Dopamine plays a critical role in animal physiology and interactions with gut microbes. In plants, dopamine is known to function in plant defense and abiotic stress tolerance; however, its role in mediating plant-microbiome interactions remains unexplored. In this study, we observed that dopamine is one of the most abundant exometabolites with natural variation in root exudates across diverse Brachypodium distachyon lines, suggesting a potential role in rhizosphere microbial assembly. To further investigate this, we colonized ten natural B. distachyon lines with a 16-member bacterial synthetic community (SynCom), collected paired metabolomic and 16S rRNA sequencing data, and performed an association analysis. Our results revealed that dopamine levels in root exudates were significantly associated with the abundance of six SynCom members in a hydroponic system. In vitro growth studies demonstrated that dopamine had a significant effect on the growth of the same six bacterial isolates. Additionally, treating soil directly with dopamine enriched Actinobacteria, consistent with both the SynCom-dopamine correlations and the isolate growth results. Collectively, our study underscores the selective influence of dopamine on rhizosphere microbial communities, with implications for precision microbiome management.