Yu Cheng, FangChao Long, Oliver Steuer, Nikol Lambeva, Florian Bärwolf, Jens Zscharschuch, Artur Erbe, Manfred Helm, Shengqiang Zhou, Slawomir Prucnal
{"title":"毫秒级热处理超掺硼锗","authors":"Yu Cheng, FangChao Long, Oliver Steuer, Nikol Lambeva, Florian Bärwolf, Jens Zscharschuch, Artur Erbe, Manfred Helm, Shengqiang Zhou, Slawomir Prucnal","doi":"10.1002/pssa.202400260","DOIUrl":null,"url":null,"abstract":"P‐type hyperdoped germanium (Ge) has attracted significant attention for the development of superconducting semiconductors. However, the limited solid solubility of acceptors, especially boron (B), in Ge makes hyperdoping challenging. Herein, a systematic study on the electrical properties of boron‐implanted germanium is presented with an atomic concentration beyond 10 at%. The B‐implanted Ge was annealed by millisecond flash lamp annealing (ms‐FLA) with different parameters. The results indicate that millisecond solid phase epitaxy ensures the electrical activation of B much above the solubility limit with hole concentration as high as 2 × 10<jats:sup>21</jats:sup> cm<jats:sup>−3</jats:sup> and low‐temperature sheet resistance of 13 Ω sq<jats:sup>−1</jats:sup> which is promising for superconductivity. It is also shown that millisecond annealing effectively suppresses the B diffusion and provides much higher activation efficiency of acceptors compared to conventional annealing methods.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"60 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milliseconds Thermal Processing of Boron Hyperdoped Germanium\",\"authors\":\"Yu Cheng, FangChao Long, Oliver Steuer, Nikol Lambeva, Florian Bärwolf, Jens Zscharschuch, Artur Erbe, Manfred Helm, Shengqiang Zhou, Slawomir Prucnal\",\"doi\":\"10.1002/pssa.202400260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P‐type hyperdoped germanium (Ge) has attracted significant attention for the development of superconducting semiconductors. However, the limited solid solubility of acceptors, especially boron (B), in Ge makes hyperdoping challenging. Herein, a systematic study on the electrical properties of boron‐implanted germanium is presented with an atomic concentration beyond 10 at%. The B‐implanted Ge was annealed by millisecond flash lamp annealing (ms‐FLA) with different parameters. The results indicate that millisecond solid phase epitaxy ensures the electrical activation of B much above the solubility limit with hole concentration as high as 2 × 10<jats:sup>21</jats:sup> cm<jats:sup>−3</jats:sup> and low‐temperature sheet resistance of 13 Ω sq<jats:sup>−1</jats:sup> which is promising for superconductivity. It is also shown that millisecond annealing effectively suppresses the B diffusion and provides much higher activation efficiency of acceptors compared to conventional annealing methods.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400260\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400260","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
P 型超掺杂锗(Ge)在超导半导体的发展中备受关注。然而,受体(尤其是硼(B))在锗中的固溶性有限,这使得超掺杂具有挑战性。本文系统研究了原子浓度超过 10% 的硼植入锗的电学特性。采用毫秒闪灯退火法(ms-FLA)对硼植入锗进行了退火,并设置了不同的参数。结果表明,毫秒固相外延可确保硼的电活化远高于溶解极限,空穴浓度高达 2 × 1021 cm-3,低温薄片电阻为 13 Ω sq-1,有望实现超导。研究还表明,与传统退火方法相比,毫秒退火能有效抑制 B 扩散,并提供更高的受体活化效率。
Milliseconds Thermal Processing of Boron Hyperdoped Germanium
P‐type hyperdoped germanium (Ge) has attracted significant attention for the development of superconducting semiconductors. However, the limited solid solubility of acceptors, especially boron (B), in Ge makes hyperdoping challenging. Herein, a systematic study on the electrical properties of boron‐implanted germanium is presented with an atomic concentration beyond 10 at%. The B‐implanted Ge was annealed by millisecond flash lamp annealing (ms‐FLA) with different parameters. The results indicate that millisecond solid phase epitaxy ensures the electrical activation of B much above the solubility limit with hole concentration as high as 2 × 1021 cm−3 and low‐temperature sheet resistance of 13 Ω sq−1 which is promising for superconductivity. It is also shown that millisecond annealing effectively suppresses the B diffusion and provides much higher activation efficiency of acceptors compared to conventional annealing methods.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.