使用标准电子元件实现数字 MemComputing

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Circuit Theory and Applications Pub Date : 2024-08-09 DOI:10.1002/cta.4220
Yuan‐Hang Zhang, Massimiliano Di Ventra
{"title":"使用标准电子元件实现数字 MemComputing","authors":"Yuan‐Hang Zhang, Massimiliano Di Ventra","doi":"10.1002/cta.4220","DOIUrl":null,"url":null,"abstract":"SummaryDigital MemComputing machines (DMMs), which employ nonlinear dynamical systems with memory (time non‐locality), have proven to be a robust and scalable unconventional computing approach for solving a wide variety of combinatorial optimization problems. However, most of the research so far has focused on the numerical simulations of the equations of motion of DMMs. This inevitably subjects time to discretization, which brings its own (numerical) issues that would be otherwise absent in actual physical systems operating in continuous time. Although hardware realizations of DMMs have been previously suggested, their implementation would require materials and devices that are not so easy to integrate with traditional electronics. Addressing this, our study introduces a novel hardware design for DMMs, utilizing readily available electronic components. This approach not only significantly boosts computational speed compared to current models but also exhibits remarkable robustness against additive noise. Crucially, it circumvents the limitations imposed by numerical noise, ensuring enhanced stability and reliability during extended operations. This paves a new path for tackling increasingly complex problems, leveraging the inherent advantages of DMMs in a more practical and accessible framework.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of digital MemComputing using standard electronic components\",\"authors\":\"Yuan‐Hang Zhang, Massimiliano Di Ventra\",\"doi\":\"10.1002/cta.4220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryDigital MemComputing machines (DMMs), which employ nonlinear dynamical systems with memory (time non‐locality), have proven to be a robust and scalable unconventional computing approach for solving a wide variety of combinatorial optimization problems. However, most of the research so far has focused on the numerical simulations of the equations of motion of DMMs. This inevitably subjects time to discretization, which brings its own (numerical) issues that would be otherwise absent in actual physical systems operating in continuous time. Although hardware realizations of DMMs have been previously suggested, their implementation would require materials and devices that are not so easy to integrate with traditional electronics. Addressing this, our study introduces a novel hardware design for DMMs, utilizing readily available electronic components. This approach not only significantly boosts computational speed compared to current models but also exhibits remarkable robustness against additive noise. Crucially, it circumvents the limitations imposed by numerical noise, ensuring enhanced stability and reliability during extended operations. This paves a new path for tackling increasingly complex problems, leveraging the inherent advantages of DMMs in a more practical and accessible framework.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4220\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4220","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要 数字内存计算器(DMM)采用具有内存(时间非位置性)的非线性动力学系统,已被证明是一种稳健且可扩展的非常规计算方法,可用于解决各种组合优化问题。然而,迄今为止,大多数研究都集中在 DMM 运动方程的数值模拟上。这不可避免地会将时间离散化,从而带来自身的(数值)问题,而这些问题在以连续时间运行的实际物理系统中是不存在的。虽然以前也有人提出过用硬件实现 DMM 的建议,但其实现需要材料和设备,而这些材料和设备并不容易与传统电子设备集成。为了解决这个问题,我们的研究利用现成的电子元件,为 DMM 引入了一种新的硬件设计。与目前的模型相比,这种方法不仅大大提高了计算速度,而且对加性噪声具有显著的鲁棒性。最重要的是,它规避了数值噪声所带来的限制,确保在长时间运行过程中提高稳定性和可靠性。这为解决日益复杂的问题铺平了一条新的道路,在一个更实用、更易操作的框架内充分利用了 DMM 的固有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of digital MemComputing using standard electronic components
SummaryDigital MemComputing machines (DMMs), which employ nonlinear dynamical systems with memory (time non‐locality), have proven to be a robust and scalable unconventional computing approach for solving a wide variety of combinatorial optimization problems. However, most of the research so far has focused on the numerical simulations of the equations of motion of DMMs. This inevitably subjects time to discretization, which brings its own (numerical) issues that would be otherwise absent in actual physical systems operating in continuous time. Although hardware realizations of DMMs have been previously suggested, their implementation would require materials and devices that are not so easy to integrate with traditional electronics. Addressing this, our study introduces a novel hardware design for DMMs, utilizing readily available electronic components. This approach not only significantly boosts computational speed compared to current models but also exhibits remarkable robustness against additive noise. Crucially, it circumvents the limitations imposed by numerical noise, ensuring enhanced stability and reliability during extended operations. This paves a new path for tackling increasingly complex problems, leveraging the inherent advantages of DMMs in a more practical and accessible framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
期刊最新文献
Issue Information Issue Information Lightweight High‐Throughput TRNG Based on Single‐Node Boolean Chaotic Structure Varactor‐tuned bandpass filter using a microstrip stepped‐impedance combline filter and a new J‐inverter A Compact Implementation of Shadow on an IoT Processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1