{"title":"化学均匀性对电沉积影响的计算研究","authors":"Adam Chalupa;Joel Warner;Jarett Martin","doi":"10.1109/TSM.2024.3414121","DOIUrl":null,"url":null,"abstract":"Industrial semiconductor electrodeposition plating cells require recirculation of process chemicals with consistent flow and minimal contaminants to prevent defects from developing during film deposition. This manuscript investigates how recirculation nozzle quality and nozzle machining can affect bath chemical uniformity. Computational fluid dynamics simulations are utilized to visualize bath chemical velocities based on variable nozzle conditions in four case studies. Results show that strict quality control of inlet nozzles, in conjunction with proper mounting angles, induce laminar bath flow. Greater fluid uniformity and laminar flow translate to a reduction of in-line defects and increased wafer yield.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 3","pages":"238-243"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Study of Chemical Uniformity Impacts on Electrodeposition\",\"authors\":\"Adam Chalupa;Joel Warner;Jarett Martin\",\"doi\":\"10.1109/TSM.2024.3414121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial semiconductor electrodeposition plating cells require recirculation of process chemicals with consistent flow and minimal contaminants to prevent defects from developing during film deposition. This manuscript investigates how recirculation nozzle quality and nozzle machining can affect bath chemical uniformity. Computational fluid dynamics simulations are utilized to visualize bath chemical velocities based on variable nozzle conditions in four case studies. Results show that strict quality control of inlet nozzles, in conjunction with proper mounting angles, induce laminar bath flow. Greater fluid uniformity and laminar flow translate to a reduction of in-line defects and increased wafer yield.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 3\",\"pages\":\"238-243\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556741/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10556741/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Computational Study of Chemical Uniformity Impacts on Electrodeposition
Industrial semiconductor electrodeposition plating cells require recirculation of process chemicals with consistent flow and minimal contaminants to prevent defects from developing during film deposition. This manuscript investigates how recirculation nozzle quality and nozzle machining can affect bath chemical uniformity. Computational fluid dynamics simulations are utilized to visualize bath chemical velocities based on variable nozzle conditions in four case studies. Results show that strict quality control of inlet nozzles, in conjunction with proper mounting angles, induce laminar bath flow. Greater fluid uniformity and laminar flow translate to a reduction of in-line defects and increased wafer yield.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.