基于双分支时频融合的抽水装置故障诊断算法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Reliability Pub Date : 2024-06-14 DOI:10.1109/TR.2024.3409427
Fangfang Zhang;Yebin Li;Dongri Shan;Yuanhong Liu;Fengying Ma;Weiyong Yu
{"title":"基于双分支时频融合的抽水装置故障诊断算法","authors":"Fangfang Zhang;Yebin Li;Dongri Shan;Yuanhong Liu;Fengying Ma;Weiyong Yu","doi":"10.1109/TR.2024.3409427","DOIUrl":null,"url":null,"abstract":"The collected data of a pumping unit contain environmental noise, which significantly reduces the precision of fault diagnosis. The previous fault detection approach depends on manual feature extraction, which is time-consuming and laborious, and it cannot cope with high-noise conditions. Therefore, we propose a dual-branch time–frequency fusion deep learning model for fault diagnosis of the pumping unit. One branch extracts time-domain information, while the other branch extracts frequency-domain information by employing the fast Fourier transform. The branch information of these two branches is concatenated, and the gate-controlled channel transfer unit module automatically learns the competitive and cooperative relationships between each branch, making the key features more prominent in information fusion. Consequently, an accurate fault diagnosis of the pumping unit can be achieved under high-noise conditions. The results demonstrate that the proposed model outperforms the traditional schemes in terms of noise, with different signal-to-noise ratios.","PeriodicalId":56305,"journal":{"name":"IEEE Transactions on Reliability","volume":"74 1","pages":"2082-2091"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis Algorithm for Pumping Unit Based on Dual-Branch Time–Frequency Fusion\",\"authors\":\"Fangfang Zhang;Yebin Li;Dongri Shan;Yuanhong Liu;Fengying Ma;Weiyong Yu\",\"doi\":\"10.1109/TR.2024.3409427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collected data of a pumping unit contain environmental noise, which significantly reduces the precision of fault diagnosis. The previous fault detection approach depends on manual feature extraction, which is time-consuming and laborious, and it cannot cope with high-noise conditions. Therefore, we propose a dual-branch time–frequency fusion deep learning model for fault diagnosis of the pumping unit. One branch extracts time-domain information, while the other branch extracts frequency-domain information by employing the fast Fourier transform. The branch information of these two branches is concatenated, and the gate-controlled channel transfer unit module automatically learns the competitive and cooperative relationships between each branch, making the key features more prominent in information fusion. Consequently, an accurate fault diagnosis of the pumping unit can be achieved under high-noise conditions. The results demonstrate that the proposed model outperforms the traditional schemes in terms of noise, with different signal-to-noise ratios.\",\"PeriodicalId\":56305,\"journal\":{\"name\":\"IEEE Transactions on Reliability\",\"volume\":\"74 1\",\"pages\":\"2082-2091\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10558719/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Reliability","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10558719/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Diagnosis Algorithm for Pumping Unit Based on Dual-Branch Time–Frequency Fusion
The collected data of a pumping unit contain environmental noise, which significantly reduces the precision of fault diagnosis. The previous fault detection approach depends on manual feature extraction, which is time-consuming and laborious, and it cannot cope with high-noise conditions. Therefore, we propose a dual-branch time–frequency fusion deep learning model for fault diagnosis of the pumping unit. One branch extracts time-domain information, while the other branch extracts frequency-domain information by employing the fast Fourier transform. The branch information of these two branches is concatenated, and the gate-controlled channel transfer unit module automatically learns the competitive and cooperative relationships between each branch, making the key features more prominent in information fusion. Consequently, an accurate fault diagnosis of the pumping unit can be achieved under high-noise conditions. The results demonstrate that the proposed model outperforms the traditional schemes in terms of noise, with different signal-to-noise ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Reliability
IEEE Transactions on Reliability 工程技术-工程:电子与电气
CiteScore
12.20
自引率
8.50%
发文量
153
审稿时长
7.5 months
期刊介绍: IEEE Transactions on Reliability is a refereed journal for the reliability and allied disciplines including, but not limited to, maintainability, physics of failure, life testing, prognostics, design and manufacture for reliability, reliability for systems of systems, network availability, mission success, warranty, safety, and various measures of effectiveness. Topics eligible for publication range from hardware to software, from materials to systems, from consumer and industrial devices to manufacturing plants, from individual items to networks, from techniques for making things better to ways of predicting and measuring behavior in the field. As an engineering subject that supports new and existing technologies, we constantly expand into new areas of the assurance sciences.
期刊最新文献
Table of Contents IEEE Reliability Society Information Editorial: Applied AI for Reliability and Cybersecurity 2024 Index IEEE Transactions on Reliability Vol. 73 Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1