{"title":"黑潮沿岸整个浮游桡足类的群落结构:日本列岛附近黑潮轴线北锋区的丰度和大小增加","authors":"Hiroomi Miyamoto , Yuji Okazaki , Hiroshi Itoh , Kiyotaka Hidaka , Hiroaki Saito","doi":"10.1016/j.dsr.2024.104346","DOIUrl":null,"url":null,"abstract":"<div><p>The Kuroshio ecosystem is an important nursery ground for various fish species. Because the prey biomass and composition influence the recruitment of larval and juvenile fish, we investigated the variation in the abundance, carbon biomass, and community structure of copepods, which are the main prey for larval and juvenile fish, along the Kuroshio from the eastern coast of Taiwan to the Boso Peninsula, Japan from 8–November 24, 2015, using 100 μm-meshed plankton net samples. We identified two groups of stations (A and B) by the cluster analysis based on the composition and abundance for adult copepods (Q-mode). The total copepod abundance and carbon biomass were higher in Group A than in Group B. Of the dominant species assemblages classified by cluster analysis (R-mode), the abundance of species assemblages S2b and S3, which were composed of small-sized species (e.g., <em>Oithona</em> and <em>Oncaea</em> species), did not differ between Groups A and B, indicating that they were distributed abundantly throughout the Kuroshio region. On the other hand, the species assemblages (S1 and S2a) including the medium-sized calanoid copepods of coastal species and subtropical species (e.g., <em>Paracalanus aculeatus</em> and <em>Clausocalanus furcatus</em>) contributed to the high abundance and biomass of Group A. Group A occurred in the north-frontal area of the Kuroshio axis near the Japanese archipelago where chlorophyll <em>a</em> was high. This indicates that the community was changed by the bottom-up processes driven by nutrient supply from the subsurface layer in the north-frontal area. These results show that although the small-sized copepods were usually dominant in numerical abundance in the Kuroshio region as well as other oligotrophic oceans, the medium-sized copepods were an important component in the copepod community in water with high primary production. We concluded that the ecosystem in the north-frontal area downstream of the Kuroshio might provide optimal prey environments for diverse fish larvae and juveniles.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"211 ","pages":"Article 104346"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Community structure of whole pelagic copepods along the Kuroshio: Increase in the abundance and size in the north frontal area of the Kuroshio axis near the Japanese archipelago\",\"authors\":\"Hiroomi Miyamoto , Yuji Okazaki , Hiroshi Itoh , Kiyotaka Hidaka , Hiroaki Saito\",\"doi\":\"10.1016/j.dsr.2024.104346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kuroshio ecosystem is an important nursery ground for various fish species. Because the prey biomass and composition influence the recruitment of larval and juvenile fish, we investigated the variation in the abundance, carbon biomass, and community structure of copepods, which are the main prey for larval and juvenile fish, along the Kuroshio from the eastern coast of Taiwan to the Boso Peninsula, Japan from 8–November 24, 2015, using 100 μm-meshed plankton net samples. We identified two groups of stations (A and B) by the cluster analysis based on the composition and abundance for adult copepods (Q-mode). The total copepod abundance and carbon biomass were higher in Group A than in Group B. Of the dominant species assemblages classified by cluster analysis (R-mode), the abundance of species assemblages S2b and S3, which were composed of small-sized species (e.g., <em>Oithona</em> and <em>Oncaea</em> species), did not differ between Groups A and B, indicating that they were distributed abundantly throughout the Kuroshio region. On the other hand, the species assemblages (S1 and S2a) including the medium-sized calanoid copepods of coastal species and subtropical species (e.g., <em>Paracalanus aculeatus</em> and <em>Clausocalanus furcatus</em>) contributed to the high abundance and biomass of Group A. Group A occurred in the north-frontal area of the Kuroshio axis near the Japanese archipelago where chlorophyll <em>a</em> was high. This indicates that the community was changed by the bottom-up processes driven by nutrient supply from the subsurface layer in the north-frontal area. These results show that although the small-sized copepods were usually dominant in numerical abundance in the Kuroshio region as well as other oligotrophic oceans, the medium-sized copepods were an important component in the copepod community in water with high primary production. We concluded that the ecosystem in the north-frontal area downstream of the Kuroshio might provide optimal prey environments for diverse fish larvae and juveniles.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":\"211 \",\"pages\":\"Article 104346\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096706372400116X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706372400116X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
黑潮生态系统是各种鱼类的重要育苗场。由于猎物的生物量和组成会影响幼鱼和稚鱼的招募,因此我们于 2015 年 8-11 月 24 日在台湾东海岸至日本房总半岛的黑潮沿岸,利用 100 μm 分格的浮游生物网样,研究了幼鱼和稚鱼的主要猎物桡足类的丰度、碳生物量和群落结构的变化。根据成体桡足类(Q-mode)的组成和丰度,我们通过聚类分析确定了两组站点(A 和 B)。在聚类分析(R-模式)划分的优势物种群中,由小型物种(如和种)组成的物种群 S2b 和 S3 的丰度在 A 组和 B 组之间没有差异,表明它们在整个黑潮区域分布丰富。另一方面,包括沿岸种和亚热带种(如 和 )在内的中型桡足类(S1 和 S2a)的物种组合使 A 组的丰度和生物量较高。这表明该群落是在北锋区表层下营养物质供应驱动的自下而上过程中发生变化的。这些结果表明,虽然在黑潮地区以及其他低营养海洋中,小型桡足类通常在数量上占优势,但在初级生产力较高的水域中,中型桡足类是桡足类群落的重要组成部分。我们的结论是,黑潮下游北岸地区的生态系统可能为多种鱼类幼体和幼鱼提供了最佳的捕食环境。
Community structure of whole pelagic copepods along the Kuroshio: Increase in the abundance and size in the north frontal area of the Kuroshio axis near the Japanese archipelago
The Kuroshio ecosystem is an important nursery ground for various fish species. Because the prey biomass and composition influence the recruitment of larval and juvenile fish, we investigated the variation in the abundance, carbon biomass, and community structure of copepods, which are the main prey for larval and juvenile fish, along the Kuroshio from the eastern coast of Taiwan to the Boso Peninsula, Japan from 8–November 24, 2015, using 100 μm-meshed plankton net samples. We identified two groups of stations (A and B) by the cluster analysis based on the composition and abundance for adult copepods (Q-mode). The total copepod abundance and carbon biomass were higher in Group A than in Group B. Of the dominant species assemblages classified by cluster analysis (R-mode), the abundance of species assemblages S2b and S3, which were composed of small-sized species (e.g., Oithona and Oncaea species), did not differ between Groups A and B, indicating that they were distributed abundantly throughout the Kuroshio region. On the other hand, the species assemblages (S1 and S2a) including the medium-sized calanoid copepods of coastal species and subtropical species (e.g., Paracalanus aculeatus and Clausocalanus furcatus) contributed to the high abundance and biomass of Group A. Group A occurred in the north-frontal area of the Kuroshio axis near the Japanese archipelago where chlorophyll a was high. This indicates that the community was changed by the bottom-up processes driven by nutrient supply from the subsurface layer in the north-frontal area. These results show that although the small-sized copepods were usually dominant in numerical abundance in the Kuroshio region as well as other oligotrophic oceans, the medium-sized copepods were an important component in the copepod community in water with high primary production. We concluded that the ecosystem in the north-frontal area downstream of the Kuroshio might provide optimal prey environments for diverse fish larvae and juveniles.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.