{"title":"利用 qutrits 实现热流的全热逆转","authors":"Irene Ada Picatoste, Rafael Sánchez","doi":"10.1103/physreva.110.022210","DOIUrl":null,"url":null,"abstract":"Few-level systems coupled to thermal baths provide useful models for quantum thermodynamics and to understand the role of heat currents in quantum information settings. Useful operations such as cooling or thermal masers have been proposed in autonomous three-level systems. In this work, we propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system. This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system. We explore the thermodynamic performance of such operation and discuss whether it can be distinguished from the action of a Maxwell demon via measurements of current fluctuations limited to the working substance.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-thermal reversal of heat currents using qutrits\",\"authors\":\"Irene Ada Picatoste, Rafael Sánchez\",\"doi\":\"10.1103/physreva.110.022210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-level systems coupled to thermal baths provide useful models for quantum thermodynamics and to understand the role of heat currents in quantum information settings. Useful operations such as cooling or thermal masers have been proposed in autonomous three-level systems. In this work, we propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system. This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system. We explore the thermodynamic performance of such operation and discuss whether it can be distinguished from the action of a Maxwell demon via measurements of current fluctuations limited to the working substance.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.022210\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022210","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
All-thermal reversal of heat currents using qutrits
Few-level systems coupled to thermal baths provide useful models for quantum thermodynamics and to understand the role of heat currents in quantum information settings. Useful operations such as cooling or thermal masers have been proposed in autonomous three-level systems. In this work, we propose the coherent coupling of two qutrits as a simultaneous refrigerator and heat pump of two reservoirs forming a system. This occurs thanks to the coupling to two other reservoirs which are out of equilibrium but do not inject heat in the system. We explore the thermodynamic performance of such operation and discuss whether it can be distinguished from the action of a Maxwell demon via measurements of current fluctuations limited to the working substance.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics