通过双光子转变精确测量掺镱 6S1/2 态的超频常数和同位素位移

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy Physical Review A Pub Date : 2024-08-05 DOI:10.1103/physreva.110.022803
R. Ayachitula, M. D. Anderson, C. D. McLaughlin, R. J. Knize, C. E. Mungan, M. D. Lindsay
{"title":"通过双光子转变精确测量掺镱 6S1/2 态的超频常数和同位素位移","authors":"R. Ayachitula, M. D. Anderson, C. D. McLaughlin, R. J. Knize, C. E. Mungan, M. D. Lindsay","doi":"10.1103/physreva.110.022803","DOIUrl":null,"url":null,"abstract":"Using Doppler-free two-photon spectroscopy of the Rb <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> transition in a temperature-controlled vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and constants, as well as the isotope shift of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state. We lock a tunable microwave-driven electro-optic modulator sideband of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>993</mn><mtext>−</mtext><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">m</mi></mrow></math> laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyperfine splittings of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, we find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>717.195</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1614.709</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math>. For the hyperfine constants <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> for the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> states, we find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>239.065</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>807.355</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>99.189</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> for the isotope shift (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> minus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>). These hyperfine splittings and constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">Δ</mi><none></none><mn>87</mn><mprescripts></mprescripts><none></none><mn>85</mn></mmultiscripts></math> of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state to be <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>0.00350</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math>, which is about 20 times more accurate than previously published results.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision measurement of hyperfine constants and isotope shift of the Rb 6S1/2 state via a two-photon transition\",\"authors\":\"R. Ayachitula, M. D. Anderson, C. D. McLaughlin, R. J. Knize, C. E. Mungan, M. D. Lindsay\",\"doi\":\"10.1103/physreva.110.022803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Doppler-free two-photon spectroscopy of the Rb <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> transition in a temperature-controlled vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and constants, as well as the isotope shift of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state. We lock a tunable microwave-driven electro-optic modulator sideband of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>993</mn><mtext>−</mtext><mi mathvariant=\\\"normal\\\">n</mi><mi mathvariant=\\\"normal\\\">m</mi></mrow></math> laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyperfine splittings of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, we find <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>717.195</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1614.709</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math>. For the hyperfine constants <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math> for the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> states, we find <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>239.065</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>807.355</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>−</mo><mn>99.189</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> for the isotope shift (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> minus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>). These hyperfine splittings and constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi mathvariant=\\\"normal\\\">Δ</mi><none></none><mn>87</mn><mprescripts></mprescripts><none></none><mn>85</mn></mmultiscripts></math> of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state to be <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>−</mo><mn>0.00350</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math>, which is about 20 times more accurate than previously published results.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.022803\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022803","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们在温控汽化池中利用无多普勒双光子光谱法测量了掺镱 5S1/2 到 6S1/2 转变过程中两种天然同位素的超正弦分裂和常数,以及 6S1/2 态的同位素位移。我们将 993-nm 激光的可调谐微波驱动电光调制器边带锁定在超稳定高精细腔上,从而实现了相对激光调谐的微波频率精度。用 Voigt 曲线拟合线形,提取线中心,从而计算出超细分裂、磁偶极子超细常数、同位素偏移和超细异常。对于 Rb85 和 Rb87 中 6S1/2 态的超正弦分裂,我们分别发现了 717.195(3)MHz 和 1614.709(3)MHz。至于 6S1/2 态的超频常数 A,我们发现 Rb85 和 Rb87 分别为 239.065(2)MHz 和 807.355(2)MHz ,而同位素偏移(Rb85 减 Rb87)为-99.189(3)MHz。这些超正弦分裂和常数比以前公布的结果精确 10 到 25 倍。我们测得 6S1/2 态的超正弦异常 Δ8785 为 -0.00350(1),比以前公布的结果精确了约 20 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision measurement of hyperfine constants and isotope shift of the Rb 6S1/2 state via a two-photon transition
Using Doppler-free two-photon spectroscopy of the Rb 5S1/2 to 6S1/2 transition in a temperature-controlled vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and constants, as well as the isotope shift of the 6S1/2 state. We lock a tunable microwave-driven electro-optic modulator sideband of the 993nm laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyperfine splittings of the 6S1/2 state in Rb85 and Rb87, respectively, we find 717.195(3)MHz and 1614.709(3)MHz. For the hyperfine constants A for the 6S1/2 states, we find 239.065(2)MHz and 807.355(2)MHz for Rb85 and Rb87, respectively, and 99.189(3)MHz for the isotope shift (Rb85 minus Rb87). These hyperfine splittings and constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly Δ8785 of the 6S1/2 state to be 0.00350(1), which is about 20 times more accurate than previously published results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
期刊最新文献
Relativistic and recoil corrections to vacuum polarization in muonic systems: Three-photon exchange, gauge invariance, and numerical values Combined microwave and optical spectroscopy for hyperfine structure analysis in thulium atoms Spectral evidence of vibronic Rabi oscillations in the resonance-enhanced photodissociation of MgH+ Universality and two-body losses: Lessons from the effective non-Hermitian dynamics of two particles Reliable quantum memories with unreliable components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1