R. Ayachitula, M. D. Anderson, C. D. McLaughlin, R. J. Knize, C. E. Mungan, M. D. Lindsay
{"title":"通过双光子转变精确测量掺镱 6S1/2 态的超频常数和同位素位移","authors":"R. Ayachitula, M. D. Anderson, C. D. McLaughlin, R. J. Knize, C. E. Mungan, M. D. Lindsay","doi":"10.1103/physreva.110.022803","DOIUrl":null,"url":null,"abstract":"Using Doppler-free two-photon spectroscopy of the Rb <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> transition in a temperature-controlled vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and constants, as well as the isotope shift of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state. We lock a tunable microwave-driven electro-optic modulator sideband of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>993</mn><mtext>−</mtext><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">m</mi></mrow></math> laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyperfine splittings of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, we find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>717.195</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1614.709</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math>. For the hyperfine constants <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> for the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> states, we find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>239.065</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>807.355</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>99.189</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\"0.16em\"></mspace><mi mathvariant=\"normal\">M</mi><mi>Hz</mi></mrow></math> for the isotope shift (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> minus <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>). These hyperfine splittings and constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi mathvariant=\"normal\">Δ</mi><none></none><mn>87</mn><mprescripts></mprescripts><none></none><mn>85</mn></mmultiscripts></math> of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state to be <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>−</mo><mn>0.00350</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math>, which is about 20 times more accurate than previously published results.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision measurement of hyperfine constants and isotope shift of the Rb 6S1/2 state via a two-photon transition\",\"authors\":\"R. Ayachitula, M. D. Anderson, C. D. McLaughlin, R. J. Knize, C. E. Mungan, M. D. Lindsay\",\"doi\":\"10.1103/physreva.110.022803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Doppler-free two-photon spectroscopy of the Rb <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>5</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> transition in a temperature-controlled vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and constants, as well as the isotope shift of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state. We lock a tunable microwave-driven electro-optic modulator sideband of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>993</mn><mtext>−</mtext><mi mathvariant=\\\"normal\\\">n</mi><mi mathvariant=\\\"normal\\\">m</mi></mrow></math> laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyperfine splittings of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, we find <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>717.195</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1614.709</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math>. For the hyperfine constants <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>A</mi></math> for the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> states, we find <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>239.065</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>807.355</mn><mo>(</mo><mn>2</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>, respectively, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>−</mo><mn>99.189</mn><mo>(</mo><mn>3</mn><mo>)</mo><mspace width=\\\"0.16em\\\"></mspace><mi mathvariant=\\\"normal\\\">M</mi><mi>Hz</mi></mrow></math> for the isotope shift (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>85</mn></mrow></mmultiscripts></mrow></math> minus <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mmultiscripts><mi>Rb</mi><mprescripts></mprescripts><none></none><mrow><mn>87</mn></mrow></mmultiscripts></mrow></math>). These hyperfine splittings and constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mmultiscripts><mi mathvariant=\\\"normal\\\">Δ</mi><none></none><mn>87</mn><mprescripts></mprescripts><none></none><mn>85</mn></mmultiscripts></math> of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>6</mn><msub><mi>S</mi><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math> state to be <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>−</mo><mn>0.00350</mn><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math>, which is about 20 times more accurate than previously published results.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.022803\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022803","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Precision measurement of hyperfine constants and isotope shift of the Rb 6S1/2 state via a two-photon transition
Using Doppler-free two-photon spectroscopy of the Rb to transition in a temperature-controlled vapor cell, for both naturally occurring isotopes, we measure to high accuracy the hyperfine splittings and constants, as well as the isotope shift of the state. We lock a tunable microwave-driven electro-optic modulator sideband of the laser to an ultrastable high-finesse cavity, thus achieving microwave frequency accuracy for the relative laser tuning. The line shapes are fit with a Voigt profile to extract line centers in order to calculate the hyperfine splittings, magnetic dipole hyperfine constants, isotope shift, and hyperfine anomaly. For the hyperfine splittings of the state in and , respectively, we find and . For the hyperfine constants for the states, we find and for and , respectively, and for the isotope shift ( minus ). These hyperfine splittings and constants are 10 to 25 times more accurate than previously published results. We measure the hyperfine anomaly of the state to be , which is about 20 times more accurate than previously published results.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics