嘧啶腐蚀抑制剂小型数据集的机器学习

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL Theoretical Chemistry Accounts Pub Date : 2024-08-09 DOI:10.1007/s00214-024-03140-x
Wise Herowati, Wahyu Aji Eko Prabowo, Muhamad Akrom, Noor Ageng Setiyanto, Achmad Wahid Kurniawan, Novianto Nur Hidayat, Totok Sutojo, Supriadi Rustad
{"title":"嘧啶腐蚀抑制剂小型数据集的机器学习","authors":"Wise Herowati, Wahyu Aji Eko Prabowo, Muhamad Akrom, Noor Ageng Setiyanto, Achmad Wahid Kurniawan, Novianto Nur Hidayat, Totok Sutojo, Supriadi Rustad","doi":"10.1007/s00214-024-03140-x","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) approaches have been developed to predict materials’ corrosion inhibition efficiency, particularly pyrimidine compounds. Notably, the virtual sample generation (VSG) technique enhances prediction accuracy, a novel approach for handling small datasets in this context. The random forest model, the best-performing nonlinear algorithm, showed substantial accuracy improvement based on the increase in <i>R</i><sup>2</sup> value from 0.05 to 0.99 and the decrease in RMSE value from 5.60 to 0.42, after applying VSG. These results underscore the efficacy of the VSG technique in boosting the predictive performance of ML models, particularly in scenarios constrained by limited data availability.</p>","PeriodicalId":23045,"journal":{"name":"Theoretical Chemistry Accounts","volume":"10 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for pyrimidine corrosion inhibitor small dataset\",\"authors\":\"Wise Herowati, Wahyu Aji Eko Prabowo, Muhamad Akrom, Noor Ageng Setiyanto, Achmad Wahid Kurniawan, Novianto Nur Hidayat, Totok Sutojo, Supriadi Rustad\",\"doi\":\"10.1007/s00214-024-03140-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning (ML) approaches have been developed to predict materials’ corrosion inhibition efficiency, particularly pyrimidine compounds. Notably, the virtual sample generation (VSG) technique enhances prediction accuracy, a novel approach for handling small datasets in this context. The random forest model, the best-performing nonlinear algorithm, showed substantial accuracy improvement based on the increase in <i>R</i><sup>2</sup> value from 0.05 to 0.99 and the decrease in RMSE value from 5.60 to 0.42, after applying VSG. These results underscore the efficacy of the VSG technique in boosting the predictive performance of ML models, particularly in scenarios constrained by limited data availability.</p>\",\"PeriodicalId\":23045,\"journal\":{\"name\":\"Theoretical Chemistry Accounts\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Chemistry Accounts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00214-024-03140-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Chemistry Accounts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03140-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

人们开发了机器学习(ML)方法来预测材料的缓蚀效率,尤其是嘧啶化合物。值得注意的是,虚拟样本生成(VSG)技术提高了预测的准确性,是在这种情况下处理小数据集的一种新方法。随机森林模型是性能最好的非线性算法,在应用虚拟样本生成技术后,R2 值从 0.05 提高到 0.99,RMSE 值从 5.60 降低到 0.42,从而大幅提高了预测精度。这些结果凸显了 VSG 技术在提高 ML 模型预测性能方面的功效,尤其是在受限于数据可用性的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning for pyrimidine corrosion inhibitor small dataset

Machine learning (ML) approaches have been developed to predict materials’ corrosion inhibition efficiency, particularly pyrimidine compounds. Notably, the virtual sample generation (VSG) technique enhances prediction accuracy, a novel approach for handling small datasets in this context. The random forest model, the best-performing nonlinear algorithm, showed substantial accuracy improvement based on the increase in R2 value from 0.05 to 0.99 and the decrease in RMSE value from 5.60 to 0.42, after applying VSG. These results underscore the efficacy of the VSG technique in boosting the predictive performance of ML models, particularly in scenarios constrained by limited data availability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Chemistry Accounts
Theoretical Chemistry Accounts 化学-物理化学
CiteScore
3.40
自引率
0.00%
发文量
74
审稿时长
3.8 months
期刊介绍: TCA publishes papers in all fields of theoretical chemistry, computational chemistry, and modeling. Fundamental studies as well as applications are included in the scope. In many cases, theorists and computational chemists have special concerns which reach either across the vertical borders of the special disciplines in chemistry or else across the horizontal borders of structure, spectra, synthesis, and dynamics. TCA is especially interested in papers that impact upon multiple chemical disciplines.
期刊最新文献
Reaction of N-methylformamide with dimethyl carbonate: a DFT study Chemical reactivity inside carbon cages: theoretical insights from a fullerene confinement Machine learning for pyrimidine corrosion inhibitor small dataset Electronic and optical properties of several cluster-assembled materials based on Zn12O12: a first-principles study Exploring host–guest interactions of bis(4-nitrophenyl)squaramide with halide anions: a computational investigation in the gas-phase and solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1