Rongrong Li , Yanguo Yin , Jilin Miao , Xiaoliang Fang , Congmin Li , Ming Xu
{"title":"孔隙结构对含铁油基复合材料在干燥和自润滑滑动条件下的摩擦和磨损特性的影响","authors":"Rongrong Li , Yanguo Yin , Jilin Miao , Xiaoliang Fang , Congmin Li , Ming Xu","doi":"10.1016/j.wear.2024.205533","DOIUrl":null,"url":null,"abstract":"<div><p>This study successfully prepares iron-based oil-containing materials with connected porous structures using TiH<sub>2</sub> and nylon 66 short fibers as pore-forming agents. The dehydrogenation of TiH<sub>2</sub> can produce large pore cavities and the nylon 66 short fiber with a highly regular shape has a unique advantage in pore channel production. Compared to the iron-based specimen without the pore-forming agent, the oil content of the iron-based specimen with the two pore-forming agents increases by 33.86 %. The tribologica23ee3l properties of the iron-based oil-containing materials under dry and self-lubricated sliding conditions are evaluated using the MM-200 ring-block sliding tribometer and the HDM-20 end-face friction and wear tester, respectively. Special emphasis is given to the effect of pore structures on wear patterns. The results showed that the material's surface is subjected to significant shear failure under dry sliding conditions, leading to the closure of pores due to plastic deformation during the initial sliding. The connected pore structure is a non-dense region, allowing shear damage to occur in the deeper subsurface of the matrix and increasing the material's wear rate. Under self-lubricated conditions, the connected pore structure facilitates the rapid release of lubricating oil, improves the initial lubrication state, and delays pore closure. As compared with dry friction, the wear rate can be reduced by two orders of magnitude under self-lubricating conditions. At a sliding speed of 0.46 m/s, an appropriate load (about 900 N) can enhance the material's ability to continuously and rapidly supply oil.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"556 ","pages":"Article 205533"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of pore structures on friction and wear properties of iron-based oil-containing composites under dry and self-lubricated sliding conditions\",\"authors\":\"Rongrong Li , Yanguo Yin , Jilin Miao , Xiaoliang Fang , Congmin Li , Ming Xu\",\"doi\":\"10.1016/j.wear.2024.205533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study successfully prepares iron-based oil-containing materials with connected porous structures using TiH<sub>2</sub> and nylon 66 short fibers as pore-forming agents. The dehydrogenation of TiH<sub>2</sub> can produce large pore cavities and the nylon 66 short fiber with a highly regular shape has a unique advantage in pore channel production. Compared to the iron-based specimen without the pore-forming agent, the oil content of the iron-based specimen with the two pore-forming agents increases by 33.86 %. The tribologica23ee3l properties of the iron-based oil-containing materials under dry and self-lubricated sliding conditions are evaluated using the MM-200 ring-block sliding tribometer and the HDM-20 end-face friction and wear tester, respectively. Special emphasis is given to the effect of pore structures on wear patterns. The results showed that the material's surface is subjected to significant shear failure under dry sliding conditions, leading to the closure of pores due to plastic deformation during the initial sliding. The connected pore structure is a non-dense region, allowing shear damage to occur in the deeper subsurface of the matrix and increasing the material's wear rate. Under self-lubricated conditions, the connected pore structure facilitates the rapid release of lubricating oil, improves the initial lubrication state, and delays pore closure. As compared with dry friction, the wear rate can be reduced by two orders of magnitude under self-lubricating conditions. At a sliding speed of 0.46 m/s, an appropriate load (about 900 N) can enhance the material's ability to continuously and rapidly supply oil.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":\"556 \",\"pages\":\"Article 205533\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824002989\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824002989","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Influence of pore structures on friction and wear properties of iron-based oil-containing composites under dry and self-lubricated sliding conditions
This study successfully prepares iron-based oil-containing materials with connected porous structures using TiH2 and nylon 66 short fibers as pore-forming agents. The dehydrogenation of TiH2 can produce large pore cavities and the nylon 66 short fiber with a highly regular shape has a unique advantage in pore channel production. Compared to the iron-based specimen without the pore-forming agent, the oil content of the iron-based specimen with the two pore-forming agents increases by 33.86 %. The tribologica23ee3l properties of the iron-based oil-containing materials under dry and self-lubricated sliding conditions are evaluated using the MM-200 ring-block sliding tribometer and the HDM-20 end-face friction and wear tester, respectively. Special emphasis is given to the effect of pore structures on wear patterns. The results showed that the material's surface is subjected to significant shear failure under dry sliding conditions, leading to the closure of pores due to plastic deformation during the initial sliding. The connected pore structure is a non-dense region, allowing shear damage to occur in the deeper subsurface of the matrix and increasing the material's wear rate. Under self-lubricated conditions, the connected pore structure facilitates the rapid release of lubricating oil, improves the initial lubrication state, and delays pore closure. As compared with dry friction, the wear rate can be reduced by two orders of magnitude under self-lubricating conditions. At a sliding speed of 0.46 m/s, an appropriate load (about 900 N) can enhance the material's ability to continuously and rapidly supply oil.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.