Linheng Ge, Hong Zhang, Zirui Wang, Qingli Gao, Manman Ren, Xiaoxia Cai, Qinze Liu, Weiliang Liu, Jinshui Yao
{"title":"用于高性能水性锌离子电池的掺锌四氧化三锰/氧化石墨烯阴极材料","authors":"Linheng Ge, Hong Zhang, Zirui Wang, Qingli Gao, Manman Ren, Xiaoxia Cai, Qinze Liu, Weiliang Liu, Jinshui Yao","doi":"10.1007/s10971-024-06499-2","DOIUrl":null,"url":null,"abstract":"<div><p>Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn<sup>2+</sup> into the prepared manganese tetroxide (Mn<sub>3</sub>O<sub>4</sub>)/graphene oxide (GO). The pre-intercalation of Zn<sup>2+</sup> effectively increases the lattice spacing of Mn<sub>3</sub>O<sub>4</sub> and reduces the barrier of insertion/extraction of Zn<sup>2+</sup>, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn<sub>3</sub>O<sub>4</sub>, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup>). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10<sup>−9</sup>–10<sup>−10</sup>cm<sup>−2</sup> s<sup>−1</sup>. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"15 - 24"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery\",\"authors\":\"Linheng Ge, Hong Zhang, Zirui Wang, Qingli Gao, Manman Ren, Xiaoxia Cai, Qinze Liu, Weiliang Liu, Jinshui Yao\",\"doi\":\"10.1007/s10971-024-06499-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn<sup>2+</sup> into the prepared manganese tetroxide (Mn<sub>3</sub>O<sub>4</sub>)/graphene oxide (GO). The pre-intercalation of Zn<sup>2+</sup> effectively increases the lattice spacing of Mn<sub>3</sub>O<sub>4</sub> and reduces the barrier of insertion/extraction of Zn<sup>2+</sup>, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn<sub>3</sub>O<sub>4</sub>, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup>). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10<sup>−9</sup>–10<sup>−10</sup>cm<sup>−2</sup> s<sup>−1</sup>. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 1\",\"pages\":\"15 - 24\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06499-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06499-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
由于锌资源丰富、安全性高且成本低,锌离子水电池(AZIBs)被认为是最有趣的锂离子电池替代技术之一。本文通过在制备的四氧化三锰(Mn3O4)/氧化石墨烯(GO)中预掺杂 Zn2+ 实现了一种新型掺锌正极材料。Zn2+ 的预掺杂有效地增加了 Mn3O4 的晶格间距,降低了 Zn2+ 的插入/萃取障碍,从而改善了材料的动力学特性。同时,导电碳骨架 GO 成功地与聚乙烯亚胺和 Mn3O4 结合在一起,扩大了电子和离子的导电性,避免了化学块体变化。这种独特的结构使掺锌阴极具有可逆的比容量和优异的性能(200 mA g-1 时为 170 mAh g-1)。此外,掺锌阴极的扩散系数为 10-9-10-10cm-2 s-1。因此,这项研究为先进电极材料在 AZIBs 应用中的实际应用引入了一种可行的方法。
Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn2+ into the prepared manganese tetroxide (Mn3O4)/graphene oxide (GO). The pre-intercalation of Zn2+ effectively increases the lattice spacing of Mn3O4 and reduces the barrier of insertion/extraction of Zn2+, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn3O4, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g−1 at 200 mA g−1). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10−9–10−10cm−2 s−1. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.