过去 30 年逐步淘汰消耗臭氧层物质 (ODS) 的环境政策与对策:台湾案例研究

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-08-12 DOI:10.3390/atmos15080961
Wen-Tien Tsai
{"title":"过去 30 年逐步淘汰消耗臭氧层物质 (ODS) 的环境政策与对策:台湾案例研究","authors":"Wen-Tien Tsai","doi":"10.3390/atmos15080961","DOIUrl":null,"url":null,"abstract":"It is well established that the reaction cycles involving some halogenated alkanes (so-called ozone-depleting substances—ODSs) contribute to the depletion of ozone in the stratosphere, prompting the Montreal Protocol (initially signed in 1987), and later amendments. The Protocol called for the scheduled phase-out of ODSs, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), carbon tetrachloride (CCl4), halon, methyl chloroform (CH3CCl3), methyl chloride (CH3Cl), and even hydrofluorocarbons (HFCs). In view of the urgent importance of ozone layer protection to the global ecological environment, the Taiwanese government has taken regulatory actions to reduce ODS consumption since 1993, through the joint venture of the central competent authorities. Under the government’s regulatory requirements, and the industry’s efforts to adopt both alternatives to ODSs and abatement technologies, the phase-out of some ODSs (i.e., CFCs, CCl4, halon, and CH3CCl3) was achieved prior to 2010. The consumption of HCFCs and methyl chloride has significantly declined over the past three decades (1993–2022). However, HFC emissions indicated a V-type variation during this period. Due to local production and extensive use of HFCs in Taiwan, the country’s emissions increased from 663 kilotons of carbon dioxide equivalents (CO2eq) in 1993 to 2330 kilotons of CO2eq in 2001, and then decreased to 373 kilotons of CO2eq in 2011. Since then, the emissions of HFCs largely used as the alternatives to ODSs showed an upward trend, increasing to 1555 kilotons of CO2eq in 2022. To be in compliance with the Kigali Amendment (KA-2015) to the Montreal Protocol for mitigating global warming, the Taiwanese government has taken regulatory actions to reduce the consumption of some HFC substances with high global warming potential (GWP) under the authorization of the Climate Change Response Act in 2023, aiming at an 80% reduction by 2045 of the baseline consumption in 2024.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"197 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Policies and Countermeasures for the Phase-Out of Ozone-Depleting Substances (ODSs) over the Last 30 Years: A Case Study in Taiwan\",\"authors\":\"Wen-Tien Tsai\",\"doi\":\"10.3390/atmos15080961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well established that the reaction cycles involving some halogenated alkanes (so-called ozone-depleting substances—ODSs) contribute to the depletion of ozone in the stratosphere, prompting the Montreal Protocol (initially signed in 1987), and later amendments. The Protocol called for the scheduled phase-out of ODSs, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), carbon tetrachloride (CCl4), halon, methyl chloroform (CH3CCl3), methyl chloride (CH3Cl), and even hydrofluorocarbons (HFCs). In view of the urgent importance of ozone layer protection to the global ecological environment, the Taiwanese government has taken regulatory actions to reduce ODS consumption since 1993, through the joint venture of the central competent authorities. Under the government’s regulatory requirements, and the industry’s efforts to adopt both alternatives to ODSs and abatement technologies, the phase-out of some ODSs (i.e., CFCs, CCl4, halon, and CH3CCl3) was achieved prior to 2010. The consumption of HCFCs and methyl chloride has significantly declined over the past three decades (1993–2022). However, HFC emissions indicated a V-type variation during this period. Due to local production and extensive use of HFCs in Taiwan, the country’s emissions increased from 663 kilotons of carbon dioxide equivalents (CO2eq) in 1993 to 2330 kilotons of CO2eq in 2001, and then decreased to 373 kilotons of CO2eq in 2011. Since then, the emissions of HFCs largely used as the alternatives to ODSs showed an upward trend, increasing to 1555 kilotons of CO2eq in 2022. To be in compliance with the Kigali Amendment (KA-2015) to the Montreal Protocol for mitigating global warming, the Taiwanese government has taken regulatory actions to reduce the consumption of some HFC substances with high global warming potential (GWP) under the authorization of the Climate Change Response Act in 2023, aiming at an 80% reduction by 2045 of the baseline consumption in 2024.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15080961\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080961","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,涉及某些卤化烷烃(即所谓的消耗臭氧层物质)的反应循环会导致平流层中臭氧的消耗,这促使《蒙特利尔议定书》(最初于 1987 年签署)以及后来的修正案出台。该议定书要求按计划淘汰消耗臭氧层物质,包括氯氟化碳(CFCs)、氯氟烃(HCFCs)、四氯化碳(CCl4)、哈龙、甲基氯仿(CH3CCl3)、氯甲烷(CH3Cl),甚至氢氟碳化物(HFCs)。鉴于保护臭氧层对全球生态环境的迫切重要性,台湾政府自 1993 年起通过中央主管当局的联合行动,采取了减少消耗臭氧层物质消费的监管行动。在政府的监管要求下,以及业界采用消耗臭氧层物质替代品和减排技术的努力下,部分消耗臭氧层物质(即氟氯化碳、四氯化碳、哈龙和三氯氯甲烷)在 2010 年前实现了淘汰。过去三十年(1993-2022 年),氟氯烃和甲基氯的消费量大幅下降。然而,氢氟碳化物的排放量在此期间呈现 V 型变化。由于 HFCs 在台湾的本地生产和广泛使用,台湾的排放量从 1993 年的 663 千吨二氧化碳当量(CO2eq)增至 2001 年的 2330 千吨二氧化碳当量(CO2eq),然后降至 2011 年的 373 千吨二氧化碳当量(CO2eq)。此后,主要用作消耗臭氧层物质替代品的氢氟碳化物的排放量呈上升趋势,到 2022 年增至 1555 千吨二氧化碳当量。为遵守《蒙特利尔议定书》关于减缓全球变暖的《基加利修正案》(KA-2015),台湾政府已于 2023 年根据《气候变化应对法》的授权采取监管行动,减少一些具有高全球变暖潜势(GWP)的 HFC 物质的消费量,目标是到 2045 年将 2024 年的基准消费量减少 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental Policies and Countermeasures for the Phase-Out of Ozone-Depleting Substances (ODSs) over the Last 30 Years: A Case Study in Taiwan
It is well established that the reaction cycles involving some halogenated alkanes (so-called ozone-depleting substances—ODSs) contribute to the depletion of ozone in the stratosphere, prompting the Montreal Protocol (initially signed in 1987), and later amendments. The Protocol called for the scheduled phase-out of ODSs, including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), carbon tetrachloride (CCl4), halon, methyl chloroform (CH3CCl3), methyl chloride (CH3Cl), and even hydrofluorocarbons (HFCs). In view of the urgent importance of ozone layer protection to the global ecological environment, the Taiwanese government has taken regulatory actions to reduce ODS consumption since 1993, through the joint venture of the central competent authorities. Under the government’s regulatory requirements, and the industry’s efforts to adopt both alternatives to ODSs and abatement technologies, the phase-out of some ODSs (i.e., CFCs, CCl4, halon, and CH3CCl3) was achieved prior to 2010. The consumption of HCFCs and methyl chloride has significantly declined over the past three decades (1993–2022). However, HFC emissions indicated a V-type variation during this period. Due to local production and extensive use of HFCs in Taiwan, the country’s emissions increased from 663 kilotons of carbon dioxide equivalents (CO2eq) in 1993 to 2330 kilotons of CO2eq in 2001, and then decreased to 373 kilotons of CO2eq in 2011. Since then, the emissions of HFCs largely used as the alternatives to ODSs showed an upward trend, increasing to 1555 kilotons of CO2eq in 2022. To be in compliance with the Kigali Amendment (KA-2015) to the Montreal Protocol for mitigating global warming, the Taiwanese government has taken regulatory actions to reduce the consumption of some HFC substances with high global warming potential (GWP) under the authorization of the Climate Change Response Act in 2023, aiming at an 80% reduction by 2045 of the baseline consumption in 2024.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1