不同载荷下柴油托盘车的实际排放特征:以中国为例

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-08-11 DOI:10.3390/atmos15080956
Ye Zhang, Yating Song, Tianshi Feng
{"title":"不同载荷下柴油托盘车的实际排放特征:以中国为例","authors":"Ye Zhang, Yating Song, Tianshi Feng","doi":"10.3390/atmos15080956","DOIUrl":null,"url":null,"abstract":"Diesel pallet trucks, a type of heavy-duty diesel trucks (HDDTs), have historically been a vital component in logistics and transport due to their high payload capacity. However, they also present significant challenges, particularly in terms of emissions which contribute substantially to urban air pollution. Traditional HDDTs emission measurement methods, such as engine bench tests and those used in laboratory settings, often fail to capture real-world emission behaviors accurately. This study specifically examines the real-world emission characteristics of diesel pallet trucks exceeding 30 t under varying loads (unloaded, half loaded, and fully loaded) and different road conditions (urban, suburban, and high-speed). Considering that data quality is the key to the accuracy of the scheme, this research utilized a portable emission measurement system (PEMS) to capture real-time emissions data of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOX), and total hydrocarbons (THC). Key findings demonstrate a direct correlation between vehicle load and emission factors, with the emission factors for CO2, CO, and NOX increasing by 39.5%, 105.4%, and 22.7%, respectively, from unloaded to fully loaded states under comprehensive operating conditions. Regression analyses further provide an emission factor prediction model for HDDPTs, underscoring the continuous relationship between speed, load, and emission rates. These findings provide a scientific basis for pollution control strategies for diesel trucks.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"77 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-World Emission Characteristics of Diesel Pallet Trucks under Varying Loads: Using the Example of China\",\"authors\":\"Ye Zhang, Yating Song, Tianshi Feng\",\"doi\":\"10.3390/atmos15080956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diesel pallet trucks, a type of heavy-duty diesel trucks (HDDTs), have historically been a vital component in logistics and transport due to their high payload capacity. However, they also present significant challenges, particularly in terms of emissions which contribute substantially to urban air pollution. Traditional HDDTs emission measurement methods, such as engine bench tests and those used in laboratory settings, often fail to capture real-world emission behaviors accurately. This study specifically examines the real-world emission characteristics of diesel pallet trucks exceeding 30 t under varying loads (unloaded, half loaded, and fully loaded) and different road conditions (urban, suburban, and high-speed). Considering that data quality is the key to the accuracy of the scheme, this research utilized a portable emission measurement system (PEMS) to capture real-time emissions data of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOX), and total hydrocarbons (THC). Key findings demonstrate a direct correlation between vehicle load and emission factors, with the emission factors for CO2, CO, and NOX increasing by 39.5%, 105.4%, and 22.7%, respectively, from unloaded to fully loaded states under comprehensive operating conditions. Regression analyses further provide an emission factor prediction model for HDDPTs, underscoring the continuous relationship between speed, load, and emission rates. These findings provide a scientific basis for pollution control strategies for diesel trucks.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15080956\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080956","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

柴油托盘车是重型柴油卡车(HDDTs)的一种,由于其载重能力强,历来是物流和运输的重要组成部分。然而,它们也面临着巨大的挑战,特别是在排放方面,这对城市空气污染造成了重大影响。传统的 HDDTs 排放测量方法,如发动机台架测试和实验室环境中使用的方法,往往无法准确捕捉真实世界中的排放行为。本研究特别考察了超过 30 吨的柴油托盘车在不同负载(空载、半载和满载)和不同路况(城市、郊区和高速)下的实际排放特性。考虑到数据质量是方案准确性的关键,本研究利用便携式排放测量系统(PEMS)采集二氧化碳(CO2)、一氧化碳(CO)、氮氧化物(NOX)和总碳氢化合物(THC)的实时排放数据。主要研究结果表明,车辆负荷与排放因子之间存在直接关联,在综合运行条件下,从空载到满载状态,二氧化碳、一氧化碳和氮氧化物的排放因子分别增加了 39.5%、105.4% 和 22.7%。回归分析进一步提供了 HDDPT 的排放因子预测模型,强调了速度、负荷和排放率之间的连续关系。这些发现为柴油卡车的污染控制策略提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-World Emission Characteristics of Diesel Pallet Trucks under Varying Loads: Using the Example of China
Diesel pallet trucks, a type of heavy-duty diesel trucks (HDDTs), have historically been a vital component in logistics and transport due to their high payload capacity. However, they also present significant challenges, particularly in terms of emissions which contribute substantially to urban air pollution. Traditional HDDTs emission measurement methods, such as engine bench tests and those used in laboratory settings, often fail to capture real-world emission behaviors accurately. This study specifically examines the real-world emission characteristics of diesel pallet trucks exceeding 30 t under varying loads (unloaded, half loaded, and fully loaded) and different road conditions (urban, suburban, and high-speed). Considering that data quality is the key to the accuracy of the scheme, this research utilized a portable emission measurement system (PEMS) to capture real-time emissions data of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOX), and total hydrocarbons (THC). Key findings demonstrate a direct correlation between vehicle load and emission factors, with the emission factors for CO2, CO, and NOX increasing by 39.5%, 105.4%, and 22.7%, respectively, from unloaded to fully loaded states under comprehensive operating conditions. Regression analyses further provide an emission factor prediction model for HDDPTs, underscoring the continuous relationship between speed, load, and emission rates. These findings provide a scientific basis for pollution control strategies for diesel trucks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1