风速与最大或平均水波高度之间的关系

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-08-08 DOI:10.3390/atmos15080948
Sarah Balkissoon, Y. Charles Li, Anthony R. Lupo, Samuel Walsh, Lukas McGuire
{"title":"风速与最大或平均水波高度之间的关系","authors":"Sarah Balkissoon, Y. Charles Li, Anthony R. Lupo, Samuel Walsh, Lukas McGuire","doi":"10.3390/atmos15080948","DOIUrl":null,"url":null,"abstract":"Dimensional analysis shows that the relation between wind speed and maximum or mean water wave height takes the form H=cU02g, where H is the maximum or mean water wave height caused by wind of speed U0, g is the gravitational acceleration, and c is a dimensionless constant. This relation is important in predicting the maximum or mean water wave height caused by a tropical cyclone. Firstly, the mathematical and theoretical justification for determining c is presented. Verification is conducted using four tropical cyclones as case studies for determining c using significant wave heights rather than the overall maximum and mean. The observed values of c are analyzed statistically. On the days when the fixed buoy captured the highest wind speeds, the frequency distributions of the data for c are close to a bell shape with very small standard deviations in comparison with the mean values; thus, the mean values provide good predictions for c. In view of the fact that tropical cyclone waves are turbulent and the background waves caused by many other factors such as lunar tidal effect cannot be ignored, the obtained results for c are quite satisfactory. This method provides a direct approach in the prediction of the wave height or the wind speeds given the c value and can serve an interpolation methodology to increase the temporal resolution of the data.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"76 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Relation between Wind Speed and Maximum or Mean Water Wave Height\",\"authors\":\"Sarah Balkissoon, Y. Charles Li, Anthony R. Lupo, Samuel Walsh, Lukas McGuire\",\"doi\":\"10.3390/atmos15080948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensional analysis shows that the relation between wind speed and maximum or mean water wave height takes the form H=cU02g, where H is the maximum or mean water wave height caused by wind of speed U0, g is the gravitational acceleration, and c is a dimensionless constant. This relation is important in predicting the maximum or mean water wave height caused by a tropical cyclone. Firstly, the mathematical and theoretical justification for determining c is presented. Verification is conducted using four tropical cyclones as case studies for determining c using significant wave heights rather than the overall maximum and mean. The observed values of c are analyzed statistically. On the days when the fixed buoy captured the highest wind speeds, the frequency distributions of the data for c are close to a bell shape with very small standard deviations in comparison with the mean values; thus, the mean values provide good predictions for c. In view of the fact that tropical cyclone waves are turbulent and the background waves caused by many other factors such as lunar tidal effect cannot be ignored, the obtained results for c are quite satisfactory. This method provides a direct approach in the prediction of the wave height or the wind speeds given the c value and can serve an interpolation methodology to increase the temporal resolution of the data.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15080948\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080948","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尺寸分析表明,风速与最大或平均水波高度之间的关系形式为 H=cU02g,其中 H 为风速 U0 引起的最大或平均水波高度,g 为重力加速度,c 为无量纲常数。这一关系对于预测热带气旋引起的最大或平均水波高度非常重要。首先,介绍了确定 c 的数学和理论依据。以四个热带气旋为案例进行验证,使用显著波高而不是总体最大值和平均值来确定 c。对观测到的 c 值进行了统计分析。在固定浮标捕捉到最高风速的日子里,c 的数据频率分布接近钟形,与平均值相比,标准偏差非常小;因此,平均值为 c 提供了良好的预测。这种方法提供了在给定 c 值的情况下预测波高或风速的直接方法,并可作为一种插值方法来提高数据的时间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Relation between Wind Speed and Maximum or Mean Water Wave Height
Dimensional analysis shows that the relation between wind speed and maximum or mean water wave height takes the form H=cU02g, where H is the maximum or mean water wave height caused by wind of speed U0, g is the gravitational acceleration, and c is a dimensionless constant. This relation is important in predicting the maximum or mean water wave height caused by a tropical cyclone. Firstly, the mathematical and theoretical justification for determining c is presented. Verification is conducted using four tropical cyclones as case studies for determining c using significant wave heights rather than the overall maximum and mean. The observed values of c are analyzed statistically. On the days when the fixed buoy captured the highest wind speeds, the frequency distributions of the data for c are close to a bell shape with very small standard deviations in comparison with the mean values; thus, the mean values provide good predictions for c. In view of the fact that tropical cyclone waves are turbulent and the background waves caused by many other factors such as lunar tidal effect cannot be ignored, the obtained results for c are quite satisfactory. This method provides a direct approach in the prediction of the wave height or the wind speeds given the c value and can serve an interpolation methodology to increase the temporal resolution of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1