Lukas Rohwer, Hannes Deponte, Wolfgang Augustin, Stephan Scholl
{"title":"对球形凹陷中的流动动力学进行立体微观 PIV 测量","authors":"Lukas Rohwer, Hannes Deponte, Wolfgang Augustin, Stephan Scholl","doi":"10.1007/s00348-024-03858-1","DOIUrl":null,"url":null,"abstract":"<div><p>One way to increase the thermal efficiency of heat exchangers is to structure the heat transfer surfaces with dimples, resulting in an enlarged surface area and intensified turbulence in the fluid flow. The increased turbulence also causes higher wall shear stress, which potentially suppresses the deposition of particles and supports a self-cleaning of the surface. For a deeper understanding of these phenomena, the flow dynamics inside the dimple were observed experimentally with Stereoscopic Micro-Particle Image Velocimetry (Stereo µPIV). The formation of an unsteady oscillating vortex, which leads to an asymmetric trail downstream of the dimple, is visualized. The significant influence of the dimple geometry on heat transfer enhancement is shown, and the most beneficial geometric ratio of the spherical dimple regarding its ability to increase turbulence is identified. A comparison of the local flow velocities with the results of the numerically and experimentally observed patterns of the deposited particles caused by the dimple’s self-cleaning effect shows a good match.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03858-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Stereoscopic Micro-PIV measurement of the flow dynamics in a spherical dimple\",\"authors\":\"Lukas Rohwer, Hannes Deponte, Wolfgang Augustin, Stephan Scholl\",\"doi\":\"10.1007/s00348-024-03858-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One way to increase the thermal efficiency of heat exchangers is to structure the heat transfer surfaces with dimples, resulting in an enlarged surface area and intensified turbulence in the fluid flow. The increased turbulence also causes higher wall shear stress, which potentially suppresses the deposition of particles and supports a self-cleaning of the surface. For a deeper understanding of these phenomena, the flow dynamics inside the dimple were observed experimentally with Stereoscopic Micro-Particle Image Velocimetry (Stereo µPIV). The formation of an unsteady oscillating vortex, which leads to an asymmetric trail downstream of the dimple, is visualized. The significant influence of the dimple geometry on heat transfer enhancement is shown, and the most beneficial geometric ratio of the spherical dimple regarding its ability to increase turbulence is identified. A comparison of the local flow velocities with the results of the numerically and experimentally observed patterns of the deposited particles caused by the dimple’s self-cleaning effect shows a good match.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"65 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00348-024-03858-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03858-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03858-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Stereoscopic Micro-PIV measurement of the flow dynamics in a spherical dimple
One way to increase the thermal efficiency of heat exchangers is to structure the heat transfer surfaces with dimples, resulting in an enlarged surface area and intensified turbulence in the fluid flow. The increased turbulence also causes higher wall shear stress, which potentially suppresses the deposition of particles and supports a self-cleaning of the surface. For a deeper understanding of these phenomena, the flow dynamics inside the dimple were observed experimentally with Stereoscopic Micro-Particle Image Velocimetry (Stereo µPIV). The formation of an unsteady oscillating vortex, which leads to an asymmetric trail downstream of the dimple, is visualized. The significant influence of the dimple geometry on heat transfer enhancement is shown, and the most beneficial geometric ratio of the spherical dimple regarding its ability to increase turbulence is identified. A comparison of the local flow velocities with the results of the numerically and experimentally observed patterns of the deposited particles caused by the dimple’s self-cleaning effect shows a good match.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.