观测驱动的新型时变系数泊松差分模型

Pub Date : 2024-08-07 DOI:10.1002/sta4.721
Ye Liu, Dehui Wang
{"title":"观测驱动的新型时变系数泊松差分模型","authors":"Ye Liu, Dehui Wang","doi":"10.1002/sta4.721","DOIUrl":null,"url":null,"abstract":"This paper studies a novel time‐varying coefficient integer‐valued time series model driven by observation. The model is suitable for modeling negative integer‐valued time series based on the Poisson difference distribution and extended binomial thinning operator. Main methods used to estimate the parameters are the conditional least squares (CLS) and conditional maximum likelihood (CML) methods. This paper also discusses the consistency and asymptotic normality of the estimation results. Likelihood ratio tests are employed to examine the existence of covariate and observation. Numerical simulations are conducted to verify the accuracy and stability of the model. Finally, a real data application is presented to demonstrate the usefulness and adaptability of this newly proposed model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel time‐varying coefficient Poisson difference model driven by observation\",\"authors\":\"Ye Liu, Dehui Wang\",\"doi\":\"10.1002/sta4.721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a novel time‐varying coefficient integer‐valued time series model driven by observation. The model is suitable for modeling negative integer‐valued time series based on the Poisson difference distribution and extended binomial thinning operator. Main methods used to estimate the parameters are the conditional least squares (CLS) and conditional maximum likelihood (CML) methods. This paper also discusses the consistency and asymptotic normality of the estimation results. Likelihood ratio tests are employed to examine the existence of covariate and observation. Numerical simulations are conducted to verify the accuracy and stability of the model. Finally, a real data application is presented to demonstrate the usefulness and adaptability of this newly proposed model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种由观测驱动的新型时变系数整数值时间序列模型。该模型基于泊松差分分布和扩展二叉稀疏算子,适用于负整数值时间序列建模。用于估计参数的主要方法是条件最小二乘法(CLS)和条件极大似然法(CML)。本文还讨论了估计结果的一致性和渐近正态性。本文采用似然比检验来检验协变量和观测值的存在性。通过数值模拟来验证模型的准确性和稳定性。最后,介绍了一个真实数据应用,以证明这一新提出模型的实用性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A novel time‐varying coefficient Poisson difference model driven by observation
This paper studies a novel time‐varying coefficient integer‐valued time series model driven by observation. The model is suitable for modeling negative integer‐valued time series based on the Poisson difference distribution and extended binomial thinning operator. Main methods used to estimate the parameters are the conditional least squares (CLS) and conditional maximum likelihood (CML) methods. This paper also discusses the consistency and asymptotic normality of the estimation results. Likelihood ratio tests are employed to examine the existence of covariate and observation. Numerical simulations are conducted to verify the accuracy and stability of the model. Finally, a real data application is presented to demonstrate the usefulness and adaptability of this newly proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1