{"title":"非高斯空间数据的非平稳因子共轭模型","authors":"Sagnik Mondal, Pavel Krupskii, Marc G. Genton","doi":"10.1002/sta4.715","DOIUrl":null,"url":null,"abstract":"We introduce a new copula model for non‐stationary replicated spatial data. It is based on the assumption that a common factor exists that controls the joint dependence of all the observations from the spatial process. As a result, our proposal can model tail dependence and tail asymmetry, unlike the Gaussian copula model. Moreover, we show that the new model can cover a full range of dependence between tail quadrant independence and tail dependence. Although the log‐likelihood of the model can be obtained in a simple form, we discuss its numerical computational issues and ways to approximate it for drawing inference. Using the estimated copula model, the spatial process can be interpolated at locations where it is not observed. We apply the proposed model to temperature data over the western part of Switzerland, and we compare its performance with that of its stationary version and with the Gaussian copula model.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non‐stationary factor copula model for non‐Gaussian spatial data\",\"authors\":\"Sagnik Mondal, Pavel Krupskii, Marc G. Genton\",\"doi\":\"10.1002/sta4.715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new copula model for non‐stationary replicated spatial data. It is based on the assumption that a common factor exists that controls the joint dependence of all the observations from the spatial process. As a result, our proposal can model tail dependence and tail asymmetry, unlike the Gaussian copula model. Moreover, we show that the new model can cover a full range of dependence between tail quadrant independence and tail dependence. Although the log‐likelihood of the model can be obtained in a simple form, we discuss its numerical computational issues and ways to approximate it for drawing inference. Using the estimated copula model, the spatial process can be interpolated at locations where it is not observed. We apply the proposed model to temperature data over the western part of Switzerland, and we compare its performance with that of its stationary version and with the Gaussian copula model.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.715\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.715","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A non‐stationary factor copula model for non‐Gaussian spatial data
We introduce a new copula model for non‐stationary replicated spatial data. It is based on the assumption that a common factor exists that controls the joint dependence of all the observations from the spatial process. As a result, our proposal can model tail dependence and tail asymmetry, unlike the Gaussian copula model. Moreover, we show that the new model can cover a full range of dependence between tail quadrant independence and tail dependence. Although the log‐likelihood of the model can be obtained in a simple form, we discuss its numerical computational issues and ways to approximate it for drawing inference. Using the estimated copula model, the spatial process can be interpolated at locations where it is not observed. We apply the proposed model to temperature data over the western part of Switzerland, and we compare its performance with that of its stationary version and with the Gaussian copula model.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.