{"title":"硅酸钴(铜)衍生的高效 CoCu/SiO2 水相糠醛加氢催化剂","authors":"Jinxin Zhang, Zhili Fan, Dongfang Wu","doi":"10.1002/ceat.202300265","DOIUrl":null,"url":null,"abstract":"<p>Converting the abundant biomass resources in nature into fine chemicals can not only reduce carbon emissions but also effectively deal with the depletion of fossil energy, which is of strategic significance for sustainable development. In this paper, by optimizing the content of bimetallic components, highly active co-doped Co<sub>1</sub>Cu<sub>3</sub> bimetallic silicate was designed and synthesized. After reduction, a highly dispersed and stable Co<sub>1</sub>Cu<sub>3</sub>/SiO<sub>2</sub> catalyst was obtained, which was used to catalyze the aqueous phase hydrogenation of furfural (FFR) to cyclopentanone (CPO). Compared with the traditional supported catalyst, the Co<sub>1</sub>Cu<sub>3</sub>/SiO<sub>2</sub>-ammonia evaporation (AE)-300 catalyst prepared by AE has the best performance. Under the optimal reaction conditions, the conversion of FFR was as high as 95.1 % and the selectivity of CPO was 88.6 %. This high activity can be attributed to the formation of highly dispersed and uniform metal active sites with low content of Co. At the same time, the formation of flocculent silicate enhances the synergism between CoCu and SiO<sub>2</sub> support and increases the specific surface area of the catalyst. In addition, the experimental results show that the reaction carbon balance will be destroyed with the high concentration of FFR solution.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient CoCu/SiO2 Catalyst Derived from Co(Cu) Silicate for Aqueous-Phase Furfural Hydrogenation\",\"authors\":\"Jinxin Zhang, Zhili Fan, Dongfang Wu\",\"doi\":\"10.1002/ceat.202300265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Converting the abundant biomass resources in nature into fine chemicals can not only reduce carbon emissions but also effectively deal with the depletion of fossil energy, which is of strategic significance for sustainable development. In this paper, by optimizing the content of bimetallic components, highly active co-doped Co<sub>1</sub>Cu<sub>3</sub> bimetallic silicate was designed and synthesized. After reduction, a highly dispersed and stable Co<sub>1</sub>Cu<sub>3</sub>/SiO<sub>2</sub> catalyst was obtained, which was used to catalyze the aqueous phase hydrogenation of furfural (FFR) to cyclopentanone (CPO). Compared with the traditional supported catalyst, the Co<sub>1</sub>Cu<sub>3</sub>/SiO<sub>2</sub>-ammonia evaporation (AE)-300 catalyst prepared by AE has the best performance. Under the optimal reaction conditions, the conversion of FFR was as high as 95.1 % and the selectivity of CPO was 88.6 %. This high activity can be attributed to the formation of highly dispersed and uniform metal active sites with low content of Co. At the same time, the formation of flocculent silicate enhances the synergism between CoCu and SiO<sub>2</sub> support and increases the specific surface area of the catalyst. In addition, the experimental results show that the reaction carbon balance will be destroyed with the high concentration of FFR solution.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300265\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300265","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Efficient CoCu/SiO2 Catalyst Derived from Co(Cu) Silicate for Aqueous-Phase Furfural Hydrogenation
Converting the abundant biomass resources in nature into fine chemicals can not only reduce carbon emissions but also effectively deal with the depletion of fossil energy, which is of strategic significance for sustainable development. In this paper, by optimizing the content of bimetallic components, highly active co-doped Co1Cu3 bimetallic silicate was designed and synthesized. After reduction, a highly dispersed and stable Co1Cu3/SiO2 catalyst was obtained, which was used to catalyze the aqueous phase hydrogenation of furfural (FFR) to cyclopentanone (CPO). Compared with the traditional supported catalyst, the Co1Cu3/SiO2-ammonia evaporation (AE)-300 catalyst prepared by AE has the best performance. Under the optimal reaction conditions, the conversion of FFR was as high as 95.1 % and the selectivity of CPO was 88.6 %. This high activity can be attributed to the formation of highly dispersed and uniform metal active sites with low content of Co. At the same time, the formation of flocculent silicate enhances the synergism between CoCu and SiO2 support and increases the specific surface area of the catalyst. In addition, the experimental results show that the reaction carbon balance will be destroyed with the high concentration of FFR solution.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.