{"title":"关于 H11B 核聚变燃料的点火问题","authors":"Esmat Ghorbanpour, Fabio Belloni","doi":"10.3389/fphy.2024.1405435","DOIUrl":null,"url":null,"abstract":"We have revisited recent results on the ideal ignition of H<jats:sup>11</jats:sup>B fuel, in the light of the latest available reactivity, an alternative self-consistent calculation of the electron temperature, an increased extent of the suprathermal effects and the impact of plasma density. At high density, we find that the ideal ignition temperature is appreciably relaxed (e.g., <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>≃</mml:mo><mml:mn>150</mml:mn><mml:mtext> keV</mml:mtext></mml:mrow></mml:math></jats:inline-formula> for <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>26</mml:mn></mml:msup><mml:mtext> </mml:mtext><mml:msup><mml:mtext>cm</mml:mtext><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></jats:inline-formula> and an optimal <jats:sup>11</jats:sup>B/H concentration <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>ε</mml:mi><mml:mo>=</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:math></jats:inline-formula>) and burn becomes substantial. We have then investigated central hot-spot ignition in both isobaric and isochoric inertial confinement configurations. Although implosion-driven ignition appears to be unfeasible, the isochoric self-heating conditions foster favourable preliminary conclusions on the utilization of proton fast ignition. In the isochoric case, we find a broad minimum in the ignition energy at <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>ρ</mml:mi><mml:mi>R</mml:mi><mml:mo>≃</mml:mo><mml:mn>8.5</mml:mn><mml:mtext> </mml:mtext><mml:mi mathvariant=\"normal\">g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mtext>cm</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math></jats:inline-formula> and <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mn>220</mml:mn><mml:mo>≲</mml:mo><mml:msub><mml:mi>T</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>≲</mml:mo><mml:mn>340</mml:mn><mml:mtext> keV</mml:mtext></mml:mrow></mml:math></jats:inline-formula> (80 <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mo>≲</mml:mo></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:mo>≲</mml:mo><mml:mn>95</mml:mn><mml:mtext> keV</mml:mtext></mml:mrow></mml:math></jats:inline-formula>), for <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mi>ε</mml:mi><mml:mo>=</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:math></jats:inline-formula>.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"15 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the ignition of H11B fusion fuel\",\"authors\":\"Esmat Ghorbanpour, Fabio Belloni\",\"doi\":\"10.3389/fphy.2024.1405435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have revisited recent results on the ideal ignition of H<jats:sup>11</jats:sup>B fuel, in the light of the latest available reactivity, an alternative self-consistent calculation of the electron temperature, an increased extent of the suprathermal effects and the impact of plasma density. At high density, we find that the ideal ignition temperature is appreciably relaxed (e.g., <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>≃</mml:mo><mml:mn>150</mml:mn><mml:mtext> keV</mml:mtext></mml:mrow></mml:math></jats:inline-formula> for <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>∼</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>26</mml:mn></mml:msup><mml:mtext> </mml:mtext><mml:msup><mml:mtext>cm</mml:mtext><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math></jats:inline-formula> and an optimal <jats:sup>11</jats:sup>B/H concentration <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mi>ε</mml:mi><mml:mo>=</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:math></jats:inline-formula>) and burn becomes substantial. We have then investigated central hot-spot ignition in both isobaric and isochoric inertial confinement configurations. Although implosion-driven ignition appears to be unfeasible, the isochoric self-heating conditions foster favourable preliminary conclusions on the utilization of proton fast ignition. In the isochoric case, we find a broad minimum in the ignition energy at <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mi>ρ</mml:mi><mml:mi>R</mml:mi><mml:mo>≃</mml:mo><mml:mn>8.5</mml:mn><mml:mtext> </mml:mtext><mml:mi mathvariant=\\\"normal\\\">g</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mtext>cm</mml:mtext><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math></jats:inline-formula> and <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mn>220</mml:mn><mml:mo>≲</mml:mo><mml:msub><mml:mi>T</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>≲</mml:mo><mml:mn>340</mml:mn><mml:mtext> keV</mml:mtext></mml:mrow></mml:math></jats:inline-formula> (80 <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mo>≲</mml:mo></mml:mrow></mml:math></jats:inline-formula><jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:mo>≲</mml:mo><mml:mn>95</mml:mn><mml:mtext> keV</mml:mtext></mml:mrow></mml:math></jats:inline-formula>), for <jats:inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"><mml:mrow><mml:mi>ε</mml:mi><mml:mo>=</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:math></jats:inline-formula>.\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2024.1405435\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1405435","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
We have revisited recent results on the ideal ignition of H11B fuel, in the light of the latest available reactivity, an alternative self-consistent calculation of the electron temperature, an increased extent of the suprathermal effects and the impact of plasma density. At high density, we find that the ideal ignition temperature is appreciably relaxed (e.g., Ti≃150 keV for ni∼1026cm−3 and an optimal 11B/H concentration ε=0.15) and burn becomes substantial. We have then investigated central hot-spot ignition in both isobaric and isochoric inertial confinement configurations. Although implosion-driven ignition appears to be unfeasible, the isochoric self-heating conditions foster favourable preliminary conclusions on the utilization of proton fast ignition. In the isochoric case, we find a broad minimum in the ignition energy at ρR≃8.5g/cm2 and 220≲Ti≲340 keV (80 ≲Te≲95 keV), for ε=0.15.
期刊介绍:
Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.