X 射线荧光和 XANES 光谱揭示了外生菌根真菌 Paxillus ammoniavirescens 中钾的不同化学性质以及与磷的共位关系

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-08 DOI:10.1016/j.funbio.2024.08.004
Jocelyn A. Richardson , Benjamin D. Rose , Kevin Garcia
{"title":"X 射线荧光和 XANES 光谱揭示了外生菌根真菌 Paxillus ammoniavirescens 中钾的不同化学性质以及与磷的共位关系","authors":"Jocelyn A. Richardson ,&nbsp;Benjamin D. Rose ,&nbsp;Kevin Garcia","doi":"10.1016/j.funbio.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Ectomycorrhizal (ECM) fungi play a major role in forest ecosystems and managed tree plantations. Particularly, they facilitate mineral weathering and nutrient transfer towards colonized roots. Among nutrients provided by these fungi, potassium (K) has been understudied compared to phosphorus (P) or nitrogen (N). The ECM fungus <em>Paxillus ammoniavirescens</em> is a generalist species that interacts with the root of many trees and can directly transfer K to them, including loblolly pine. However, the forms of K that ECM fungi can store is still unknown. Here, we used synchrotron potassium X-ray fluorescence (XRF) and K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy on <em>P. ammoniavirescens</em> growing in axenic conditions to investigate the K chemistries accumulating in the center and the edge of the mycelium. We observed that various K forms accumulated in different part of the mycelium, including K-nitrate (KNO<sub>3</sub>), K-C-O compounds (such as K-tartrate K<sub>2</sub>(C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>) and K-oxalate (K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>)), K-S and K-P compounds. Saprotrophic fungi have been shown to excrete carboxylic acids, which in turn play a role in soil mineral weathering. Our finding of several K counter-ions to carboxylic acids may suggest that, besides their direct transfer to colonized roots, K ions can also be involved in the production of compounds necessary for sourcing nutrients from their surrounding environment by ECM fungi. Additionally, this work reveals that XANES spectroscopy can be used to identify the various forms of K accumulating in biological systems.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-ray fluorescence and XANES spectroscopy revealed diverse potassium chemistries and colocalization with phosphorus in the ectomycorrhizal fungus Paxillus ammoniavirescens\",\"authors\":\"Jocelyn A. Richardson ,&nbsp;Benjamin D. Rose ,&nbsp;Kevin Garcia\",\"doi\":\"10.1016/j.funbio.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ectomycorrhizal (ECM) fungi play a major role in forest ecosystems and managed tree plantations. Particularly, they facilitate mineral weathering and nutrient transfer towards colonized roots. Among nutrients provided by these fungi, potassium (K) has been understudied compared to phosphorus (P) or nitrogen (N). The ECM fungus <em>Paxillus ammoniavirescens</em> is a generalist species that interacts with the root of many trees and can directly transfer K to them, including loblolly pine. However, the forms of K that ECM fungi can store is still unknown. Here, we used synchrotron potassium X-ray fluorescence (XRF) and K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy on <em>P. ammoniavirescens</em> growing in axenic conditions to investigate the K chemistries accumulating in the center and the edge of the mycelium. We observed that various K forms accumulated in different part of the mycelium, including K-nitrate (KNO<sub>3</sub>), K-C-O compounds (such as K-tartrate K<sub>2</sub>(C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>) and K-oxalate (K<sub>2</sub>C<sub>2</sub>O<sub>4</sub>)), K-S and K-P compounds. Saprotrophic fungi have been shown to excrete carboxylic acids, which in turn play a role in soil mineral weathering. Our finding of several K counter-ions to carboxylic acids may suggest that, besides their direct transfer to colonized roots, K ions can also be involved in the production of compounds necessary for sourcing nutrients from their surrounding environment by ECM fungi. Additionally, this work reveals that XANES spectroscopy can be used to identify the various forms of K accumulating in biological systems.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614624001089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624001089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

外生菌根(ECM)真菌在森林生态系统和人工林中发挥着重要作用。特别是,它们能促进矿物质风化和养分向定植根系的转移。在这些真菌提供的养分中,与磷(P)或氮(N)相比,钾(K)的研究一直不足。ECM 真菌是一种通性菌种,能与许多树木的根部发生相互作用,并能直接将钾转移到这些根部,包括小叶松。然而,ECM 真菌能以何种形式储存钾还不得而知。在这里,我们利用同步辐射钾 X 射线荧光 (XRF) 和 K 边 X 射线吸收近边缘结构 (XANES) 光谱对生长在轴生条件下的菌丝进行了研究,以了解在菌丝中心和边缘积累的钾化学成分。我们观察到在菌丝体的不同部位积累了各种形式的钾,包括硝酸钾(KNO)、K-C-O 化合物(如酒石酸钾(CHO)和草酸钾(KCO))、K-S 和 K-P 化合物。研究表明,腐生真菌会排泄羧酸,而羧酸又在土壤矿物风化过程中发挥作用。我们在羧酸中发现的几种 K 反离子可能表明,K 离子除了直接转移到定植的根部外,还可能参与 ECM 真菌从周围环境中获取养分所需的化合物的生产。此外,这项工作还揭示了 XANES 光谱法可用于识别生物系统中各种形式的钾积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X-ray fluorescence and XANES spectroscopy revealed diverse potassium chemistries and colocalization with phosphorus in the ectomycorrhizal fungus Paxillus ammoniavirescens

Ectomycorrhizal (ECM) fungi play a major role in forest ecosystems and managed tree plantations. Particularly, they facilitate mineral weathering and nutrient transfer towards colonized roots. Among nutrients provided by these fungi, potassium (K) has been understudied compared to phosphorus (P) or nitrogen (N). The ECM fungus Paxillus ammoniavirescens is a generalist species that interacts with the root of many trees and can directly transfer K to them, including loblolly pine. However, the forms of K that ECM fungi can store is still unknown. Here, we used synchrotron potassium X-ray fluorescence (XRF) and K-edge X-ray Absorption Near Edge Structure (XANES) spectroscopy on P. ammoniavirescens growing in axenic conditions to investigate the K chemistries accumulating in the center and the edge of the mycelium. We observed that various K forms accumulated in different part of the mycelium, including K-nitrate (KNO3), K-C-O compounds (such as K-tartrate K2(C4H4O6) and K-oxalate (K2C2O4)), K-S and K-P compounds. Saprotrophic fungi have been shown to excrete carboxylic acids, which in turn play a role in soil mineral weathering. Our finding of several K counter-ions to carboxylic acids may suggest that, besides their direct transfer to colonized roots, K ions can also be involved in the production of compounds necessary for sourcing nutrients from their surrounding environment by ECM fungi. Additionally, this work reveals that XANES spectroscopy can be used to identify the various forms of K accumulating in biological systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1