{"title":"分生孢子核分布模式和伞形多孔菌无性生命周期的启示","authors":"Shoujian Li, Bing Li, Xinlei Xu, Youyan Liu, Yongmei Xing, Shunxing Guo","doi":"10.1016/j.funbio.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p><em>P. umbellatus</em> sclerotium is a traditional Chinese medicine that is widely utilized in China, Korea, Japan, and other countries due to its diverse medicinal activities, such as diuretic, antitumor, anticancer, and immune system enhancement effects. Conidia, which are common asexual spores in various fungi, are not universally present in <em>Polyporus</em> species. In this study, the asexual life cycle of <em>P</em>. <em>umbellatus</em> was elucidated. Conidia, i.e. arthorconidia, were produced by both dikaryotic and monokaryotic strains. In the dikaryotic strain, binucleate, uninucleate, and nuclei-free conidia were identified with proportions of 67.9 %, 12.4 %, and 19.7 %, respectively. Conversely, the monokaryotic strain did not produce binucleate conidia. This discrepancy suggests that binucleate spores are heterokaryons, while uninucleate spores are homokaryons. Clamp connections were observed in dikaryotic hyphae, but were absent in monokaryotic hyphae. Monokaryotic strains were obtained from conidia of the dikaryotic strain. Additionally, mating types were determined through pairing tests, and successful crossbreeding occurred between monokaryotic strains derived from conidia and basidiospores from different strains. This study introduced the first crossbreeding strategy for <em>P</em>. <em>umbellatus</em>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the nuclear distribution patterns of conidia and the asexual life cycle of Polyporus umbellatus\",\"authors\":\"Shoujian Li, Bing Li, Xinlei Xu, Youyan Liu, Yongmei Xing, Shunxing Guo\",\"doi\":\"10.1016/j.funbio.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>P. umbellatus</em> sclerotium is a traditional Chinese medicine that is widely utilized in China, Korea, Japan, and other countries due to its diverse medicinal activities, such as diuretic, antitumor, anticancer, and immune system enhancement effects. Conidia, which are common asexual spores in various fungi, are not universally present in <em>Polyporus</em> species. In this study, the asexual life cycle of <em>P</em>. <em>umbellatus</em> was elucidated. Conidia, i.e. arthorconidia, were produced by both dikaryotic and monokaryotic strains. In the dikaryotic strain, binucleate, uninucleate, and nuclei-free conidia were identified with proportions of 67.9 %, 12.4 %, and 19.7 %, respectively. Conversely, the monokaryotic strain did not produce binucleate conidia. This discrepancy suggests that binucleate spores are heterokaryons, while uninucleate spores are homokaryons. Clamp connections were observed in dikaryotic hyphae, but were absent in monokaryotic hyphae. Monokaryotic strains were obtained from conidia of the dikaryotic strain. Additionally, mating types were determined through pairing tests, and successful crossbreeding occurred between monokaryotic strains derived from conidia and basidiospores from different strains. This study introduced the first crossbreeding strategy for <em>P</em>. <em>umbellatus</em>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614624001053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624001053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Insight into the nuclear distribution patterns of conidia and the asexual life cycle of Polyporus umbellatus
P. umbellatus sclerotium is a traditional Chinese medicine that is widely utilized in China, Korea, Japan, and other countries due to its diverse medicinal activities, such as diuretic, antitumor, anticancer, and immune system enhancement effects. Conidia, which are common asexual spores in various fungi, are not universally present in Polyporus species. In this study, the asexual life cycle of P. umbellatus was elucidated. Conidia, i.e. arthorconidia, were produced by both dikaryotic and monokaryotic strains. In the dikaryotic strain, binucleate, uninucleate, and nuclei-free conidia were identified with proportions of 67.9 %, 12.4 %, and 19.7 %, respectively. Conversely, the monokaryotic strain did not produce binucleate conidia. This discrepancy suggests that binucleate spores are heterokaryons, while uninucleate spores are homokaryons. Clamp connections were observed in dikaryotic hyphae, but were absent in monokaryotic hyphae. Monokaryotic strains were obtained from conidia of the dikaryotic strain. Additionally, mating types were determined through pairing tests, and successful crossbreeding occurred between monokaryotic strains derived from conidia and basidiospores from different strains. This study introduced the first crossbreeding strategy for P. umbellatus.