异构图注意网络改进了癌症多组学整合

Sina Tabakhi, Charlotte Vandermeulen, Ian Sudbery, Haiping Lu
{"title":"异构图注意网络改进了癌症多组学整合","authors":"Sina Tabakhi, Charlotte Vandermeulen, Ian Sudbery, Haiping Lu","doi":"arxiv-2408.02845","DOIUrl":null,"url":null,"abstract":"The increase in high-dimensional multiomics data demands advanced integration\nmodels to capture the complexity of human diseases. Graph-based deep learning\nintegration models, despite their promise, struggle with small patient cohorts\nand high-dimensional features, often applying independent feature selection\nwithout modeling relationships among omics. Furthermore, conventional\ngraph-based omics models focus on homogeneous graphs, lacking multiple types of\nnodes and edges to capture diverse structures. We introduce a Heterogeneous\nGraph ATtention network for omics integration (HeteroGATomics) to improve\ncancer diagnosis. HeteroGATomics performs joint feature selection through a\nmulti-agent system, creating dedicated networks of feature and patient\nsimilarity for each omic modality. These networks are then combined into one\nheterogeneous graph for learning holistic omic-specific representations and\nintegrating predictions across modalities. Experiments on three cancer\nmultiomics datasets demonstrate HeteroGATomics' superior performance in cancer\ndiagnosis. Moreover, HeteroGATomics enhances interpretability by identifying\nimportant biomarkers contributing to the diagnosis outcomes.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous graph attention network improves cancer multiomics integration\",\"authors\":\"Sina Tabakhi, Charlotte Vandermeulen, Ian Sudbery, Haiping Lu\",\"doi\":\"arxiv-2408.02845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in high-dimensional multiomics data demands advanced integration\\nmodels to capture the complexity of human diseases. Graph-based deep learning\\nintegration models, despite their promise, struggle with small patient cohorts\\nand high-dimensional features, often applying independent feature selection\\nwithout modeling relationships among omics. Furthermore, conventional\\ngraph-based omics models focus on homogeneous graphs, lacking multiple types of\\nnodes and edges to capture diverse structures. We introduce a Heterogeneous\\nGraph ATtention network for omics integration (HeteroGATomics) to improve\\ncancer diagnosis. HeteroGATomics performs joint feature selection through a\\nmulti-agent system, creating dedicated networks of feature and patient\\nsimilarity for each omic modality. These networks are then combined into one\\nheterogeneous graph for learning holistic omic-specific representations and\\nintegrating predictions across modalities. Experiments on three cancer\\nmultiomics datasets demonstrate HeteroGATomics' superior performance in cancer\\ndiagnosis. Moreover, HeteroGATomics enhances interpretability by identifying\\nimportant biomarkers contributing to the diagnosis outcomes.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高维多组学数据的增加需要先进的整合模型来捕捉人类疾病的复杂性。基于图的深度学习整合模型尽管前景广阔,但在处理小规模患者队列和高维特征时却显得力不从心,通常只应用独立的特征选择,而不对 omics 之间的关系进行建模。此外,传统的基于图的 omics 模型侧重于同质图,缺乏多种类型的节点和边来捕捉多样化的结构。我们介绍了一种用于整合 omics 的异构图 ATtention 网络(HeteroGATomics),以改进癌症诊断。HeteroGATomics 通过多代理系统执行联合特征选择,为每种 omic 模式创建专门的特征和患者相似性网络。然后将这些网络组合成一个异构图,用于学习整体的肿瘤特异性表征和跨模态整合预测。在三个癌症多组学数据集上的实验证明了 HeteroGATomics 在癌症诊断方面的卓越性能。此外,HeteroGATomics 还能识别有助于诊断结果的重要生物标记物,从而提高可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous graph attention network improves cancer multiomics integration
The increase in high-dimensional multiomics data demands advanced integration models to capture the complexity of human diseases. Graph-based deep learning integration models, despite their promise, struggle with small patient cohorts and high-dimensional features, often applying independent feature selection without modeling relationships among omics. Furthermore, conventional graph-based omics models focus on homogeneous graphs, lacking multiple types of nodes and edges to capture diverse structures. We introduce a Heterogeneous Graph ATtention network for omics integration (HeteroGATomics) to improve cancer diagnosis. HeteroGATomics performs joint feature selection through a multi-agent system, creating dedicated networks of feature and patient similarity for each omic modality. These networks are then combined into one heterogeneous graph for learning holistic omic-specific representations and integrating predictions across modalities. Experiments on three cancer multiomics datasets demonstrate HeteroGATomics' superior performance in cancer diagnosis. Moreover, HeteroGATomics enhances interpretability by identifying important biomarkers contributing to the diagnosis outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1