Vela:以数据为导向的太空探索联合合作建议书

Holly M. Dinkel, Jason K. Cornelius
{"title":"Vela:以数据为导向的太空探索联合合作建议书","authors":"Holly M. Dinkel, Jason K. Cornelius","doi":"arxiv-2408.04730","DOIUrl":null,"url":null,"abstract":"The UN Office of Outer Space Affairs identifies synergy of space development\nactivities and international cooperation through data and infrastructure\nsharing in their Sustainable Development Goal 17 (SDG17). Current multilateral\nspace exploration paradigms, however, are divided between the Artemis and the\nRoscosmos-CNSA programs to return to the moon and establish permanent human\nsettlements. As space agencies work to expand human presence in space, economic\nresource consolidation in pursuit of technologically ambitious space\nexpeditions is the most sensible path to accomplish SDG17. This paper compiles\na budget dataset for the top five federally-funded space agencies: CNSA, ESA,\nJAXA, NASA, and Roscosmos. Using time-series econometric anslysis methods in\nSTATA, this work analyzes each agency's economic contributions toward space\nexploration. The dataset results are used to propose a multinational space\nmission, Vela, for the development of an orbiting space station around Mars in\nthe late 2030s. Distribution of economic resources and technological\ncapabilities by the respective space programs are proposed to ensure\nprogrammatic redundancy and increase the odds of success on the given timeline.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vela: A Data-Driven Proposal for Joint Collaboration in Space Exploration\",\"authors\":\"Holly M. Dinkel, Jason K. Cornelius\",\"doi\":\"arxiv-2408.04730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The UN Office of Outer Space Affairs identifies synergy of space development\\nactivities and international cooperation through data and infrastructure\\nsharing in their Sustainable Development Goal 17 (SDG17). Current multilateral\\nspace exploration paradigms, however, are divided between the Artemis and the\\nRoscosmos-CNSA programs to return to the moon and establish permanent human\\nsettlements. As space agencies work to expand human presence in space, economic\\nresource consolidation in pursuit of technologically ambitious space\\nexpeditions is the most sensible path to accomplish SDG17. This paper compiles\\na budget dataset for the top five federally-funded space agencies: CNSA, ESA,\\nJAXA, NASA, and Roscosmos. Using time-series econometric anslysis methods in\\nSTATA, this work analyzes each agency's economic contributions toward space\\nexploration. The dataset results are used to propose a multinational space\\nmission, Vela, for the development of an orbiting space station around Mars in\\nthe late 2030s. Distribution of economic resources and technological\\ncapabilities by the respective space programs are proposed to ensure\\nprogrammatic redundancy and increase the odds of success on the given timeline.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联合国外层空间事务办公室在其可持续发展目标 17(SDG17)中确定了通过数据和基础设施共享实现空间发展活动和国际合作的协同作用。然而,目前的多边空间探索范式分为阿尔忒弥斯计划和俄罗斯航天局-中国国家航天局重返月球计划,以及建立人类永久居住地计划。随着太空机构努力扩大人类在太空的存在,通过经济资源整合来追求技术上雄心勃勃的太空探索,是实现可持续发展目标 17 的最明智途径。本文汇编了联邦政府资助的五大航天机构的预算数据集:中国国家航天局(CNSA)、欧洲航天局(ESA)、日本宇宙航空研究开发机构(JAXA)、美国国家航空航天局(NASA)和俄罗斯航天局(Roscosmos)。利用 STATA 中的时间序列计量经济学分析方法,本文分析了各机构对太空探索的经济贡献。数据集的结果被用于提出一个多国太空发射计划--"维拉 "计划,以在 2030 年代末开发一个环绕火星的轨道空间站。提出了各太空计划的经济资源和技术能力分配方案,以确保计划的冗余性,提高在既定时间内取得成功的几率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vela: A Data-Driven Proposal for Joint Collaboration in Space Exploration
The UN Office of Outer Space Affairs identifies synergy of space development activities and international cooperation through data and infrastructure sharing in their Sustainable Development Goal 17 (SDG17). Current multilateral space exploration paradigms, however, are divided between the Artemis and the Roscosmos-CNSA programs to return to the moon and establish permanent human settlements. As space agencies work to expand human presence in space, economic resource consolidation in pursuit of technologically ambitious space expeditions is the most sensible path to accomplish SDG17. This paper compiles a budget dataset for the top five federally-funded space agencies: CNSA, ESA, JAXA, NASA, and Roscosmos. Using time-series econometric anslysis methods in STATA, this work analyzes each agency's economic contributions toward space exploration. The dataset results are used to propose a multinational space mission, Vela, for the development of an orbiting space station around Mars in the late 2030s. Distribution of economic resources and technological capabilities by the respective space programs are proposed to ensure programmatic redundancy and increase the odds of success on the given timeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1