{"title":"可扩展的多轮多方隐私保护神经网络训练","authors":"Xingyu Lu;Umit Yigit Basaran;Başak Güler","doi":"10.1109/TIT.2024.3441509","DOIUrl":null,"url":null,"abstract":"Privacy-preserving machine learning has achieved breakthrough advances in collaborative training of machine learning models, under strong information-theoretic privacy guarantees. Despite the recent advances, communication bottleneck still remains as a major challenge against scalability in neural networks. To address this challenge, this paper presents the first scalable multi-party neural network training framework with linear communication complexity, significantly improving over the quadratic state-of-the-art, under strong end-to-end information-theoretic privacy guarantees. Our contribution is an iterative coded computing mechanism with linear communication complexity, termed Double Lagrange Coding, which allows iterative scalable multi-party polynomial computations without degrading the parallelization gain, adversary tolerance, and dropout resilience throughout the iterations. While providing strong multi-round information-theoretic privacy guarantees, our framework achieves equal adversary tolerance, resilience to user dropouts, and model accuracy to the state-of-the-art, while reducing the communication overhead from quadratic to linear. In doing so, our framework addresses a key technical challenge in collaborative privacy-preserving machine learning, while paving the way for large-scale privacy-preserving iterative algorithms for deep learning and beyond.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"8204-8236"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Multi-Round Multi-Party Privacy-Preserving Neural Network Training\",\"authors\":\"Xingyu Lu;Umit Yigit Basaran;Başak Güler\",\"doi\":\"10.1109/TIT.2024.3441509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy-preserving machine learning has achieved breakthrough advances in collaborative training of machine learning models, under strong information-theoretic privacy guarantees. Despite the recent advances, communication bottleneck still remains as a major challenge against scalability in neural networks. To address this challenge, this paper presents the first scalable multi-party neural network training framework with linear communication complexity, significantly improving over the quadratic state-of-the-art, under strong end-to-end information-theoretic privacy guarantees. Our contribution is an iterative coded computing mechanism with linear communication complexity, termed Double Lagrange Coding, which allows iterative scalable multi-party polynomial computations without degrading the parallelization gain, adversary tolerance, and dropout resilience throughout the iterations. While providing strong multi-round information-theoretic privacy guarantees, our framework achieves equal adversary tolerance, resilience to user dropouts, and model accuracy to the state-of-the-art, while reducing the communication overhead from quadratic to linear. In doing so, our framework addresses a key technical challenge in collaborative privacy-preserving machine learning, while paving the way for large-scale privacy-preserving iterative algorithms for deep learning and beyond.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 11\",\"pages\":\"8204-8236\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633214/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633214/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Scalable Multi-Round Multi-Party Privacy-Preserving Neural Network Training
Privacy-preserving machine learning has achieved breakthrough advances in collaborative training of machine learning models, under strong information-theoretic privacy guarantees. Despite the recent advances, communication bottleneck still remains as a major challenge against scalability in neural networks. To address this challenge, this paper presents the first scalable multi-party neural network training framework with linear communication complexity, significantly improving over the quadratic state-of-the-art, under strong end-to-end information-theoretic privacy guarantees. Our contribution is an iterative coded computing mechanism with linear communication complexity, termed Double Lagrange Coding, which allows iterative scalable multi-party polynomial computations without degrading the parallelization gain, adversary tolerance, and dropout resilience throughout the iterations. While providing strong multi-round information-theoretic privacy guarantees, our framework achieves equal adversary tolerance, resilience to user dropouts, and model accuracy to the state-of-the-art, while reducing the communication overhead from quadratic to linear. In doing so, our framework addresses a key technical challenge in collaborative privacy-preserving machine learning, while paving the way for large-scale privacy-preserving iterative algorithms for deep learning and beyond.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.