相关随机向量的检测

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-08-05 DOI:10.1109/TIT.2024.3435008
Dor Elimelech;Wasim Huleihel
{"title":"相关随机向量的检测","authors":"Dor Elimelech;Wasim Huleihel","doi":"10.1109/TIT.2024.3435008","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of deciding whether two standard normal random vectors \n<inline-formula> <tex-math>$\\textsf {X}\\in \\mathbb {R}^{n}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\textsf {Y}\\in \\mathbb {R}^{n}$ </tex-math></inline-formula>\n are correlated or not. This is formulated as a hypothesis testing problem, where under the null hypothesis, these vectors are statistically independent, while under the alternative, \n<inline-formula> <tex-math>$\\textsf {X}$ </tex-math></inline-formula>\n and a randomly and uniformly permuted version of \n<inline-formula> <tex-math>$\\textsf {Y}$ </tex-math></inline-formula>\n, are correlated with correlation \n<inline-formula> <tex-math>$\\rho $ </tex-math></inline-formula>\n. We analyze the thresholds at which optimal testing is information-theoretically impossible and possible, as a function of n and \n<inline-formula> <tex-math>$\\rho $ </tex-math></inline-formula>\n. To derive our information-theoretic lower bounds, we develop a novel technique for evaluating the second moment of the likelihood ratio using an orthogonal polynomials expansion, which among other things, reveals a surprising connection to integer partition functions. We also study a multi-dimensional generalization of the above setting, where rather than two vectors we observe two databases/matrices, and furthermore allow for partial correlations between these two.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"8942-8960"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Correlated Random Vectors\",\"authors\":\"Dor Elimelech;Wasim Huleihel\",\"doi\":\"10.1109/TIT.2024.3435008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the problem of deciding whether two standard normal random vectors \\n<inline-formula> <tex-math>$\\\\textsf {X}\\\\in \\\\mathbb {R}^{n}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$\\\\textsf {Y}\\\\in \\\\mathbb {R}^{n}$ </tex-math></inline-formula>\\n are correlated or not. This is formulated as a hypothesis testing problem, where under the null hypothesis, these vectors are statistically independent, while under the alternative, \\n<inline-formula> <tex-math>$\\\\textsf {X}$ </tex-math></inline-formula>\\n and a randomly and uniformly permuted version of \\n<inline-formula> <tex-math>$\\\\textsf {Y}$ </tex-math></inline-formula>\\n, are correlated with correlation \\n<inline-formula> <tex-math>$\\\\rho $ </tex-math></inline-formula>\\n. We analyze the thresholds at which optimal testing is information-theoretically impossible and possible, as a function of n and \\n<inline-formula> <tex-math>$\\\\rho $ </tex-math></inline-formula>\\n. To derive our information-theoretic lower bounds, we develop a novel technique for evaluating the second moment of the likelihood ratio using an orthogonal polynomials expansion, which among other things, reveals a surprising connection to integer partition functions. We also study a multi-dimensional generalization of the above setting, where rather than two vectors we observe two databases/matrices, and furthermore allow for partial correlations between these two.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 12\",\"pages\":\"8942-8960\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10623497/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10623497/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了如何判断两个标准正态随机向量 $\textsf {X}\in \mathbb {R}^{n}$ 和 $\textsf {Y}\in \mathbb {R}^{n}$ 是否相关的问题。这被表述为一个假设检验问题,在零假设下,这些向量在统计上是独立的,而在备择假设下,$\textsf {X}$ 和随机均匀排列的$\textsf {Y}$ 是相关的,相关性为 $\rho $。作为 n 和 $\rho $ 的函数,我们分析了最佳测试在信息论上不可能和可能的临界值。 为了得出信息论下限,我们开发了一种新技术,使用正交多项式展开来评估似然比的第二矩,除其他外,这种技术揭示了与整数分割函数的惊人联系。我们还研究了上述设置的多维广义化,即我们观察的不是两个向量,而是两个数据库/矩阵,而且允许这两个数据库/矩阵之间存在部分相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Correlated Random Vectors
In this paper, we investigate the problem of deciding whether two standard normal random vectors $\textsf {X}\in \mathbb {R}^{n}$ and $\textsf {Y}\in \mathbb {R}^{n}$ are correlated or not. This is formulated as a hypothesis testing problem, where under the null hypothesis, these vectors are statistically independent, while under the alternative, $\textsf {X}$ and a randomly and uniformly permuted version of $\textsf {Y}$ , are correlated with correlation $\rho $ . We analyze the thresholds at which optimal testing is information-theoretically impossible and possible, as a function of n and $\rho $ . To derive our information-theoretic lower bounds, we develop a novel technique for evaluating the second moment of the likelihood ratio using an orthogonal polynomials expansion, which among other things, reveals a surprising connection to integer partition functions. We also study a multi-dimensional generalization of the above setting, where rather than two vectors we observe two databases/matrices, and furthermore allow for partial correlations between these two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
IEEE Transactions on Information Theory Information for Authors Reliable Computation by Large-Alphabet Formulas in the Presence of Noise Capacity Results for the Wiretapped Oblivious Transfer Table of Contents IEEE Transactions on Information Theory Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1