有违规行为的随机试验中的稳健识别

Yi Cui, Désiré Kédagni, Huan Wu
{"title":"有违规行为的随机试验中的稳健识别","authors":"Yi Cui, Désiré Kédagni, Huan Wu","doi":"arxiv-2408.03530","DOIUrl":null,"url":null,"abstract":"This paper considers a robust identification of causal parameters in a\nrandomized experiment setting with noncompliance where the standard local\naverage treatment effect assumptions could be violated. Following Li,\nK\\'edagni, and Mourifi\\'e (2024), we propose a misspecification robust bound\nfor a real-valued vector of various causal parameters. We discuss\nidentification under two sets of weaker assumptions: random assignment and\nexclusion restriction (without monotonicity), and random assignment and\nmonotonicity (without exclusion restriction). We introduce two causal\nparameters: the local average treatment-controlled direct effect (LATCDE), and\nthe local average instrument-controlled direct effect (LAICDE). Under the\nrandom assignment and monotonicity assumptions, we derive sharp bounds on the\nlocal average treatment-controlled direct effects for the always-takers and\nnever-takers, respectively, and the total average controlled direct effect for\nthe compliers. Additionally, we show that the intent-to-treat effect can be\nexpressed as a convex weighted average of these three effects. Finally, we\napply our method on the proximity to college instrument and find that growing\nup near a four-year college increases the wage of never-takers (who represent\nmore than 70% of the population) by a range of 4.15% to 27.07%.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Identification in Randomized Experiments with Noncompliance\",\"authors\":\"Yi Cui, Désiré Kédagni, Huan Wu\",\"doi\":\"arxiv-2408.03530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a robust identification of causal parameters in a\\nrandomized experiment setting with noncompliance where the standard local\\naverage treatment effect assumptions could be violated. Following Li,\\nK\\\\'edagni, and Mourifi\\\\'e (2024), we propose a misspecification robust bound\\nfor a real-valued vector of various causal parameters. We discuss\\nidentification under two sets of weaker assumptions: random assignment and\\nexclusion restriction (without monotonicity), and random assignment and\\nmonotonicity (without exclusion restriction). We introduce two causal\\nparameters: the local average treatment-controlled direct effect (LATCDE), and\\nthe local average instrument-controlled direct effect (LAICDE). Under the\\nrandom assignment and monotonicity assumptions, we derive sharp bounds on the\\nlocal average treatment-controlled direct effects for the always-takers and\\nnever-takers, respectively, and the total average controlled direct effect for\\nthe compliers. Additionally, we show that the intent-to-treat effect can be\\nexpressed as a convex weighted average of these three effects. Finally, we\\napply our method on the proximity to college instrument and find that growing\\nup near a four-year college increases the wage of never-takers (who represent\\nmore than 70% of the population) by a range of 4.15% to 27.07%.\",\"PeriodicalId\":501293,\"journal\":{\"name\":\"arXiv - ECON - Econometrics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是在随机实验设置中的因果参数稳健识别问题,在这种设置中,标准的局部平均治疗效果假设可能会被违反。继 Li、K\'edagni 和 Mourifi\'e (2024)之后,我们为各种因果参数的实值向量提出了一个误设稳健约束。我们讨论了两组较弱假设下的识别:随机分配和排除限制(无单调性),以及随机分配和单调性(无排除限制)。我们引入了两个因果参数:当地平均治疗控制直接效应(LATCDE)和当地平均工具控制直接效应(LAICDE)。在随机分配和单调性假设下,我们分别推导出了 "总是接受者 "和 "从不接受者 "的本地平均治疗控制直接效应,以及 "遵守者 "的总平均控制直接效应的尖锐界限。此外,我们还证明,意向治疗效果可以表示为这三种效果的凸加权平均值。最后,我们将我们的方法应用于靠近大学的工具上,发现在四年制大学附近长大的人,会使从不接受治疗者(占总人口的 70% 以上)的工资增加 4.15% 到 27.07%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Identification in Randomized Experiments with Noncompliance
This paper considers a robust identification of causal parameters in a randomized experiment setting with noncompliance where the standard local average treatment effect assumptions could be violated. Following Li, K\'edagni, and Mourifi\'e (2024), we propose a misspecification robust bound for a real-valued vector of various causal parameters. We discuss identification under two sets of weaker assumptions: random assignment and exclusion restriction (without monotonicity), and random assignment and monotonicity (without exclusion restriction). We introduce two causal parameters: the local average treatment-controlled direct effect (LATCDE), and the local average instrument-controlled direct effect (LAICDE). Under the random assignment and monotonicity assumptions, we derive sharp bounds on the local average treatment-controlled direct effects for the always-takers and never-takers, respectively, and the total average controlled direct effect for the compliers. Additionally, we show that the intent-to-treat effect can be expressed as a convex weighted average of these three effects. Finally, we apply our method on the proximity to college instrument and find that growing up near a four-year college increases the wage of never-takers (who represent more than 70% of the population) by a range of 4.15% to 27.07%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1